
Ágnes Hajdu, MD; Andrea Kurcz, MD; Karolina Böröcz, MD, MSc

National Center for Epidemiology, Dept. of Hospital Epidemiology and Hygiene, Budapest, Hungary

Summary

In May 2012 Hungary participated in the first European point prevalence survey (PPS) of healthcare-associated infections (HAI) and antimicrobial use (AMU) coordinated by the European Centre for Disease Prevention and Control (ECDC). Due to the increasing incidence of healthcare-associated *Clostridium difficile* infection (HD-CDI) in Hungary, we analysed HA-CDI data in the national PPS. The survey included 29 hospitals and 10,180 in-patients. A total of 462 patients with HA (4.5%, 95% CI: 4.0-5.2%) were recorded. The mean prevalence of HA-CDI was 0.5% (95% CI: 0.3-0.9%). The percentage of HA-CDI among all HAI was 10.6% (almost 3x higher than in the overall European PPS). Nearly half of HA-CDI (45.3%) were present on admission. Factors associated with increased odds of HA-CDI were increasing age and length of stay (before onset, if HA), ultimately/rapidly fatal co-morbidity, urinary catheter in place, medical specialty, hospital fluorquinolone use, number of infection control nurses, and secondary/tertiary level of care. The results confirmed that HA-CDI is an important public health problem in Hungary which calls for multifaceted prevention strategy.

Methods

European PPS of healthcare-associated infections and antimicrobial use, 2011-2012 [1]

- **Inclusion cri:** acute care hospitals → all acute care wards → patients present on PPS day at 8 am
- **Exclusion cri:** chemotherapy wards, ICU, ORs/OpDs, Outpatients
- **Case definition of HD-CDI:** The definition of CDI is based on the following criteria: 1) Several episodes of diarrhoea (at least 3 episodes per day) occurring within a 7-day period; 2) a positive diagnostic test for *C. difficile* toxins A and/or B (Tester or modified tetrathionate bile broth); 3) Colonic histopathological characteristics of CDI on a specimen obtained via endoscopy.

Results

Healthcare-associated infections

- **Number of pts in PPS:** 10,180 patients (43% male)
- **Median age of pts:** 61 years
- **Total number of HAI:** 498 infections
- **Prevalence of pts with HA:** 4.5% (95% CI: 4.0-5.2%)

Healthcare-associated C. difficile infections

- **Number of pts with HA-CDI:** 53 patients (43% male)
- **Median age of pts:** 75 years
- **Prevalence of HA-CDI:** 0.5% (95% CI: 0.3-0.9%)
- **Prevalence by hospital:** 0.0-1.8%
- **HA-CDI of all HAI:** 10.6% (33/298)
- **HA-CDI present on admission:** 45.3% (24/53)

The percentage of HA-CDI of all HAI was the lowest in primary level and highest in secondary level hospitals (fig. 1). Infectious disease specialty had the highest prevalence of HA-CDI (fig. 2), which were all imported infections. Several independent predictors of HA-CDI were found (table).

Conclusions

- Although the prevalence of patients with HA observed in the Hungarian PPS (4.5%) was lower than in the European sample (6.0%), the proportion of HA-CDI of all HAI was considerably higher in Hungary (10.6%) than in Europe (3.6%) [2].
- Imported HA-CDI cases contributed significantly to the burden of HA-CDI. This has importance regarding the risk of secondary transmission, and screening policies.
- Elderly patients with comorbidities were at high risk of HA-CDI. Length of stay and fluoroquinolone use at hospital level were important modifiable risk factors identified.
- Our findings suggest that a higher number of infection control nurses may contribute to better diagnosis of HA-CDI and lower use of fluoroquinolones.

References

Acknowledgements

We thank the participating hospitals for the data collection in the national PPS, and Dr. Carl Suetens at ECDC for his invaluable help in the data analysis.

Figure 1. Percentage of healthcare-associated *Clostridium difficile* infection in all healthcare-associated infections, by hospital type

Figure 2. Specialties with at least 1% prevalence of healthcare-associated *Clostridium difficile* infection

Antimicrobials used

Figure 3. Antimicrobials received by patients with HA-CDI on the survey day

Table. Factors associated with increased odds of healthcare-associated *Clostridium difficile* infection in univariate analysis (crude ratios) and in the multilevel logistic regression model (adjusted ratios).

Contact: Ágnes Hajdu, MD

Address: National Center for Epidemiology, Dept. of Hospital Epidemiology and Hygiene, Budapest, Hungary

Phone: +36-1-4767742

Fax: +36-1-4767747

Email: a.hajdu@eok.antes.hu

Introduction

- The epidemiology of HA-CDI has started to change in Hungary in the second half of the 2000’s.
- Notification data showed that the incidence of HA-CDI increased from 1.2 to 2.8 per 10,000 patient-days from 2011 to 2012 in Hungary.
- To complement notification data and better understand risk factors of HA-CDI, we aimed to describe HA-CDI cases, antimicrobials used and associated factors in the first Hungarian point prevalence survey of HAI and antimicrobial use.
- The national survey was conducted in the frame of the first European PPS of HAI and AMU implemented in 29 countries under the coordination of ECDC in 2011-2012.

Data analysis

- Calculation of mean prevalence of HA-CDI, and prevalences by hospital, specialty, age, sex.
- Calculation of adjusted odds ratios for risk factors at patient and hospital level using a multilevel mixed effect logistic regression.

Table:

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coef (95% CI)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hospital</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primary</td>
<td>0.0 (0.0-0.0)</td>
<td>0.000</td>
</tr>
<tr>
<td>Secondary</td>
<td>0.0 (0.0-0.0)</td>
<td>0.000</td>
</tr>
<tr>
<td>Tertiary</td>
<td>0.0 (0.0-0.0)</td>
<td>0.000</td>
</tr>
<tr>
<td>Specialty</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Internal medicine</td>
<td>0.0 (0.0-0.0)</td>
<td>0.000</td>
</tr>
<tr>
<td>Surgery</td>
<td>0.0 (0.0-0.0)</td>
<td>0.000</td>
</tr>
<tr>
<td>Other</td>
<td>0.0 (0.0-0.0)</td>
<td>0.000</td>
</tr>
<tr>
<td>Age group</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pediatric</td>
<td>0.0 (0.0-0.0)</td>
<td>0.000</td>
</tr>
<tr>
<td>Adult</td>
<td>0.0 (0.0-0.0)</td>
<td>0.000</td>
</tr>
<tr>
<td>Elderly</td>
<td>0.0 (0.0-0.0)</td>
<td>0.000</td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>0.0 (0.0-0.0)</td>
<td>0.000</td>
</tr>
<tr>
<td>Male</td>
<td>0.0 (0.0-0.0)</td>
<td>0.000</td>
</tr>
<tr>
<td>Antimicrobials</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ceftriaxone</td>
<td>0.0 (0.0-0.0)</td>
<td>0.000</td>
</tr>
<tr>
<td>Amoxicillin</td>
<td>0.0 (0.0-0.0)</td>
<td>0.000</td>
</tr>
<tr>
<td>Fluoroquinolone</td>
<td>0.0 (0.0-0.0)</td>
<td>0.000</td>
</tr>
</tbody>
</table>

Figure 1: Percentage of healthcare-associated *Clostridium difficile* infection in all healthcare-associated infections, by hospital type

Figure 2: Specialties with at least 1% prevalence of healthcare-associated *Clostridium difficile* infection

Figure 3: Antimicrobials received by patients with HA-CDI on the survey day