Antimicrobial Stewardship (ASP) Evaluation of Meropenem Use at a Large Academic Medical Center

Justin Siegfried PharmD, Marco R. Scipione PharmD, Donald Chen MD, Michael Phillips MD, John Papadopoulos PharmD, Yanina Dubrovskaya PharmD

NYU Langone Medical Center, New York, NY

# 194

RESULTS (CONT.)

Microbiological data, clinical and treatment characteristics

ICU Only

Retrospective review of electronic medical records (EMR)

>14 days of therapy vs. non-ICU (15.9% vs. 8.5%, p=0.27). Meropenem was used as escalation of therapy (24%) and ASP team (21%). Positive cultures with GN organisms were present in 53% of patients, and

start. Most common approval source was from ID attending (43%) followed by an approval from critical care (28%). Logistic regression, prior MDRO infection or colonization (within 90 days) was identified as a predictor of in-hospital mortality (OR 1.783 (0.583-5.85) P=0.31. Among 145 patients who received meropenem during Q2 of 2013, 43 were in ICU at meropenem start.

Results: Meropenem utilization was measured in days of therapy (DOT)/1000 patient (pt) days. Microbiological data, clinical and treatment characteristics were evaluated retrospectively for all patients who received ≥1 dose of meropenem during 2nd quarter (Q2) of 2013. A gram-negative (GN) isolate was considered to be meropenem-resistant if it was resistant in our antimicrobial stewardship (ASP) guidelines.

Methods: Meropenem utilization was measured in days of therapy (DOT)/1000 pt days and retrospective review of electronic medical records (EMR) was performed for all patients who received ≥1 dose of meropenem during 2nd quarter (Q2) of 2013. A gram-negative (GN) isolate was considered to be meropenem-resistant if it was resistant in our antimicrobial stewardship (ASP) guidelines.

Results: In Q2 of 2013 as compared to Q2 of 2012 meropenem use increased by a mean of #2 DOT/1000 pt-days in intensive care units (ICU), (18.1% vs. 6.8%, p=0.016). Among 145 patients who received meropenem during Q2 of 2013, 43 were in ICU at meropenem start. Most common approval source was from ID attending (43%) followed by an approval from critical care (28%). Logistic regression, prior MDRO infection or colonization (within 90 days) was identified as a predictor of in-hospital mortality (OR 1.783 (0.583-5.85) P=0.31. Among 145 patients who received meropenem during Q2 of 2013, 43 were in ICU at meropenem start.

Most common approval source was from ID attending (43%) followed by an approval from critical care (28%). Logistic regression, prior MDRO infection or colonization (within 90 days) was identified as a predictor of in-hospital mortality (OR 1.783 (0.583-5.85) P=0.31. Among 145 patients who received meropenem during Q2 of 2013, 43 were in ICU at meropenem start.

Most common approval source was from ID attending (43%) followed by an approval from critical care (28%). Logistic regression, prior MDRO infection or colonization (within 90 days) was identified as a predictor of in-hospital mortality (OR 1.783 (0.583-5.85) P=0.31. Among 145 patients who received meropenem during Q2 of 2013, 43 were in ICU at meropenem start.

Most common approval source was from ID attending (43%) followed by an approval from critical care (28%). Logistic regression, prior MDRO infection or colonization (within 90 days) was identified as a predictor of in-hospital mortality (OR 1.783 (0.583-5.85) P=0.31. Among 145 patients who received meropenem during Q2 of 2013, 43 were in ICU at meropenem start.

Most common approval source was from ID attending (43%) followed by an approval from critical care (28%). Logistic regression, prior MDRO infection or colonization (within 90 days) was identified as a predictor of in-hospital mortality (OR 1.783 (0.583-5.85) P=0.31. Among 145 patients who received meropenem during Q2 of 2013, 43 were in ICU at meropenem start.