Development of Anemia and Changes in Hemoglobin Concentrations with Amphotericin B therapy for Cryptococcal Meningitis

Lilian Tugume MBChB1, Bozena M Morowski MPH2, Mahaa Abass DO MPH1,2, Nathan C Bahr MD, MA3,4, Reuben Kiggundu MBChB1, Henry W Nabeta MBChB1, Kathy Hyppler Hullissk PhD2, Kabanda Taseera MBChB MS1, Abdu K Musaibire MMed1,2, Charlotte Schutz MBChB MPH4, Conrad Muzoora MMed3, Darlisha A Williams MPH1,2, Melissa A Rolles PhD3, Graeme Meintjes MBChB PhD3, Joshua Rhein MD4,5, David B Meya MMed1,5, David R Boulware MD MPH5

1Infectious Disease Institute, Makerere University, Kampala, Uganda; 2University of Minnesota, Minneapolis, MN, USA; 3Mbarara University of Science and Technology, Mbarara, Uganda; 4University of Cape Town, Cape Town, South Africa

Abstract

Background: Anemia represents a common toxicity with amphotericin B-based induction therapy for HIV-infected persons with cryptococcal meningitis. We sought to examine the impact of anemia-related factors on survival. Methods: Data from Ugandan and South African participants from the COAT and ASTRO-CM trials were used to characterize variation of hemoglobin (Hb) concentrations from diagnosis to 12 weeks post-diagnosis. Anemia severity was classified based on Hb at cryptococcal meningitis diagnosis, and nadir Hb values during amphotericin induction. Cox proportional hazard models estimated 2-week induction period mortality risk among participants with nadir hemoglobin <8.5 g/dL (Grade 3 anemia). All received induction therapy with amphotericin deoxycholate (800 mg/day). Flucytosine (850 mg/day) was administered during amphotericin induction. Results: The median (IQR) nadir hemoglobin concentration during amphotericin induction was 8.4 g/dL (5.9; 9.6) among those who died during the induction period. Anemia severity was classified based on nadir Hb ≤7.4 g/dL (Grade 2 anemia). Cox proportional hazard models estimated 2-week mortality risk among those who died during the induction period. Anemia severity was classified based on nadir Hb ≤7.4 g/dL (Grade 2 anemia). Cox proportional hazard models estimated 2-week mortality risk among those who died during the induction period. Anemia severity was classified based on nadir Hb ≤7.4 g/dL (Grade 2 anemia).

Introduction

• Anemia is an independent predictor of mortality in AIDS patients with an increased risk of death as hemoglobin levels decline.1,2
• Amphotericin, the mainstay of cryptococcal meningitis treatment, has been shown to cause anemia.1,2
• We characterized the relationship between amphotericin administration and hemoglobin levels during and after treatment.
• We also assessed the relationship between hemoglobin levels in individuals receiving amphotericin therapy and 2-week and 10-week mortality.

Methodology

• Data from the Cryptococcal Optimal ART Timing (COAT) trial and the pilot phase of the Adjunctive Sterilization for Treatment of Cryptococcal Meningitis (ASTRO-CM) trial were used for the analysis included herein.
• COAT trial participants were ART-naive at the time of meningitis diagnosis whereas 45% of ASTRO-CM participants were receiving ART.
• Participants were ≥18 years of age, pregnant women were excluded.
• All received combination induction therapy with amphotericin B deoxycholate (0.7-1.0 mg/kg/day) and fluconazole (800 mg/day).
• Adjunctive extracellular (100-400mg/day) was administered to all ASTRO-CM pilot trial participants.
• Participants were followed for at least 12 weeks post-enrollment.
• Serial hemoglobin levels were obtained from participants at baseline and additional intervals through the follow up period.
• Anemia severity was defined as follows: 2

1. Moderate anemia (Grade 2) – hemoglobin ≤7.5 – 8.4 g/dL.
2. Severe anemia (Grade 3) – hemoglobin ≤ 6.5 – 7.4 g/dL.
3. Potentially life-threatening anemia (Grade 4) – hemoglobin ≤ 6.5 g/dL.

Statistical Analysis:

• Median hemoglobin concentration at diagnosis (both cohorts) and 14-day induction therapy nadir values (COAT only) are summarized.
• Change in hemoglobin concentrations from baseline to 1) the end of induction therapy and 2) the 14-day nadir hemoglobin were evaluated via linear mixed models with random intercepts for an individual.
• Composite exposures of grades 2-4 and 3 anemia at baseline were used in Cox proportional hazards models to evaluate 2-week and 10-week mortality.
• Nadir hemoglobin values during induction therapy were used to assess the risk of 10-week mortality among COAT participants with baseline hemoglobin ≤8.5 g/dL and survived 2 weeks.

Conclusions

• For patients with baseline Hgb ≥8.5 g/dL:
 - Hgb dropped by ≥3.5g/dL after 14 days of amphotericin induction therapy.
 - Hgb levels rebounded to 90% of baseline hemoglobin within 10 weeks after the completion of amphotericin.
• Development/worsening of anemia while on amphotericin had no effect on 10-week mortality.

For patients with baseline Hgb ≤8.5 g/dL:
• There was an elevated risk of death at both 2 and 10 weeks post diagnosis when compared to persons with baseline Hgb ≥8.5 g/dL.

References and Acknowledgements: This work was supported by the National Institute of Neurologic Disorders and Stroke (R01NS086312), the National Institute of Allergy and Infectious Disease (U01A189244, T32AI055433), and the Fogarty International Center at the National Institutes of Health (R25TW009345).