Global Epidemiology of Human Rabies: Systematic Review and Meta-Analysis

Mohsin Ali1, Brian A. Chang1, Sandra Isabel2,4, and Shaun K. Morris2,3

1Cahn School of Medicine at Mount Sinai, New York, USA; 2Dept. of Paediatrics, University of Toronto, and
3Division of Infectious Diseases, 4Hospital for Sick Children, Toronto, Canada. *Authors with equal contributions

BACKGROUND & OBJECTIVES

• Rabies is a neglected tropical disease, where virtually all cases result in death
• Human rabies is estimated to cause about 55,000 deaths (90% CI, 24,000–93,000) worldwide per year, mostly through bites from dogs in Africa and Asia1,2
• In Europe and the Americas, human rabies due to dog bites has declined and now persists mostly via other wildlife, notably bats and foxes3,4
• To date, estimates of global burden have been indirect, using probability decision-tree approaches3,4

Study objectives

To synthesize surveillance data and published literature to:

1. Estimate burden of human rabies worldwide
2. Describe epidemiological trends by region

METHODS

Data collection

• Medline and Embase searched in November 2014; and titles, abstracts, and full-text articles subsequently screened by two reviewers using a priori criteria to select papers on human rabies
• Surveillance systems identified through review process and data extracted and collated

Data analysis

• For countries with robust surveillance, data analyzed to estimate annual incidence per country
• For countries without robust surveillance, study incidence estimates (with calculated exact Poisson 95% confidence intervals) summarized by random-effects meta-analysis
• Epidemiological trends by region described in terms of person, place, and time

RESULTS

Summary of data collection

• Of 1,737 titles reviewed, 263 full-text articles were reviewed, of which 108 were included
• Data from 32 papers were analyzed by random-effects meta-analysis
• Data from the following surveillance systems were extracted, collated, and analyzed:
 • WHO Rabies Bulletin Europe (FL)
 • SIRVERA (Pan American Health Organization)
 • Handistatus II (OEIC)
 • WAHID (OIE)
 • South East Africa Rabies Group (WHO)
 • China Centers for Disease Control
 • Thailand Ministry of Public Health

RESULTS (CONT’D)

Regional estimates for 2013:

• Latin America: 11 cases
• Caribbean: 2 cases
• North America: 0 cases
• Europe: 10 cases
• China: 1,172 cases
• Thailand: 7 cases

Meta-analysis for annual incidence rates in areas without robust surveillance

<table>
<thead>
<tr>
<th>Region</th>
<th>No. studies</th>
<th>Rate (95% CI)</th>
<th>P (Cochran’s Q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>South Asia</td>
<td>11</td>
<td>9.2 (4.7–18.1)</td>
<td>99% (p<0.001)</td>
</tr>
<tr>
<td>Sub-Saharan Asia</td>
<td>12</td>
<td>1.4 (0.5–4.0)</td>
<td>99% (p<0.001)</td>
</tr>
<tr>
<td>Southeast Asia</td>
<td>2</td>
<td>1.8 (1.1–2.9)</td>
<td>99% (p<0.001)</td>
</tr>
<tr>
<td>Central Asia and Middle East</td>
<td>7</td>
<td>0.2 (0.1–0.5)</td>
<td>98% (p<0.001)</td>
</tr>
</tbody>
</table>

Estimated annual incidence of human rabies in select countries with endemic canine rabies

CONCLUSIONS & NEXT STEPS

• South Asia and Sub-Saharan Africa continue to be the areas of highest incidence for human rabies
• Declines in reported incidence in China and Latin America highlight importance of dog vaccination campaigns for eliminating the continuing burden of human rabies
• Lack of resources, access, and education as well as inadequate surveillance systems continue to hinder elimination of rabies in many developing countries
• Next steps: investigate heterogeneity using meta-regression; collect more data from countries with robust surveillance to estimate global incidence

REFERENCES & ACKNOWLEDGEMENTS

We are grateful to Dr. Conrad Fischer of Kansas State University for sharing insights about the data generated by the World Rabies Burden European, and Dr. Carl Bell for providing guidance on creating high-resolution maps. Dr. Marco Vignoli of FRAHA helped on analysis—and provided editorial support—to the EMERG project for the Americas. Dr. Patrice Courpron-Bibo and colleagues of the World Organization for Animal Health (OIE) for their critical review and feedback. Dr. Suresh Hingor and Dr. T. Jan-Nair, who graciously gave us data on China. We thank Dr.industry leaders, for providing (anonymized) surveillance data, and for the World Health Organisation of Public Health, Dr. M. K. Susarla and Dr. Davinder for their help; we also thank the many people who provided data on this topic. We thank Dr. industry leaders, and many people who provided data on this topic. We thank Dr. industry leaders, and many people who provided data on this topic. We thank Dr. industry leaders, and many people who provided data on this topic. We thank Dr. industry leaders, and many people who provided data on this topic.