Effect of Probiotics on Markers of Gut Health in Bangladeshi infants


1Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford School of Medicine, Stanford, CA 94305; 2Center for Communicable Diseases, International Center for Diarrheal Disease Research, Bangladesh, Dhaka, Bangladesh 1212; 3Department of Medicine, Stanford School of Medicine, Stanford, CA 94305; 4School of Public Health, University of California Berkeley, Berkeley, CA, 94720; 5Department of Chemistry, Wagner College, New York, NY

Introduction

Environmental enteropathy is a condition that affects children in low-income settings and results in reduced intestinal absorption and increased permeability. Recent studies suggest that probiotics may be able to affect intestinal absorption and permeability. The objectives of this study are to determine the effect of two probiotics on markers of gut health and environmental enteropathy in Bangladeshi infants.

Methods

Infants age 4 to 12 weeks (N=160) were randomized to one month of a combination of *Lactobacillus reuteri* DSM 17938 and *Bifidobacterium longum* infants on three different schedules: daily, weekly, or biweekly (every two weeks) or to non-probiotic control and followed for two additional months (Figure 1). Stool samples were collected at baseline and weekly throughout the study and urine samples were collected at baseline and monthly. Intestinal absorption and permeability were estimated using the lactulose-mannitol (LM) ratio. Intestinal markers of inflammation were measured with commercial ELISA assays for myeloperoxidase (MPO) and alpha 1 antitrypsin (A1AT). A preliminary subset of samples is presented here.

Results

Of 82 infants, 65% at baseline and 65% at month 1 had lactulose/ mannitol ratios >0.10 (abnormal), which is indicative of environmental enteropathy (EE).

Table 1: Counts of Normal and Abnormal (EE) LM Ratios by Arm

<table>
<thead>
<tr>
<th>Arm</th>
<th>Control</th>
<th>Baseline</th>
<th>Month 1</th>
<th>Weekly</th>
<th>Biweekly</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>5</td>
<td>7</td>
<td>5</td>
<td>7</td>
<td>10</td>
</tr>
<tr>
<td>Abnormal</td>
<td>12</td>
<td>10</td>
<td>12</td>
<td>12</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17</td>
</tr>
</tbody>
</table>

Overall the average LM ratio increased from 0.29 (median=0.13) at baseline to 0.50 (median=0.14) at month 1. The change in LM ratio over one month was not significantly different between the control (median=0.02), all probiotic arms combined (median=0.01), and daily probiotic arm (median=0.02).

Figure 2: Lactulose Mannitol (LM) Ratios

Bars represent mean. a. LM levels of control arm and combined probiotics; b. Change in LM ratio over 1 month. Bars represent median, lines represent IQR. No differences were statistically significant.

Conclusions

The majority of young infants in this population had evidence of inflammation and environmental enteropathy and this increased as the infants got older. We found little evidence one month of administration of our chosen probiotics stalled development of environmental enteropathy in Bangladeshi infants.

This study was supported by the Thrasher Research Fund Early Career Award, Freeman Spiegel Institute Underdevelopment Grant, Stanford Center for Innovation in Global Health Seed Grant, Global Health Equity Scholars Fellowship, The Stanford Institute for Immunity, Transplantation and Infection (IIT) Interdisciplinary Seed Grant, Stanford Medical Scholars Fund, University of California. Berkeley’s Center for Global Public Health Fellowship, Stanford Child Health Research Institute Postdoctoral Grant through Lucile Packard Foundation for Children’s Health and the Stanford CTSA (UL1 RR025744), and the TL1 Clinical Research Training Program of the Stanford Clinical and Translational Science Award to Spectrum (NIH TL1 TR 001084).

Contact information: ehoy@stanford.edu