Emergence of *Staphylococcus caprae* in a Neonatal Intensive Care Unit (NICU)

Cullen Marshall, BS¹, Elizabeth Ristagno, MD¹ Lynette Boland, MSN, CIC², Gordon Stout, BS¹, Alan Junkins, PhD², Charles Woods, MD, MS¹, and Kristina Bryant, MD¹

¹University of Louisville School of Medicine, Louisville, KY, ²Norton Children’s Hospital, Louisville, KY, ³Norton Healthcare, Louisville, KY

Background

- *Staphylococcus caprae* (S. caprae) is a coagulase-negative *Staphylococcus* species (CoNS) usually associated with animals and an uncommon cause of healthcare-acquired infections in humans
- An outbreak was suspected in the fall of 2015 when 5 S. caprae infections (blood-3, wound with underlying osteomyelitis=1; paracentesis fluid=1) were identified in patients admitted to the same NICU; review of records revealed no prior isolates
- Four isolates available for testing were identical by repetitive element sequence based-PCR (rep-PCR), and exhibited high-level resistance to mupirocin (MU)
- The identification of the first S. caprae isolate was coincident with the introduction of MALDI-TOF for organism identification

Objective

- To describe the emergence of S. caprae in a NICU that has used universal monthly MU prophylaxis since 12/9/13

Setting

- 101-bed Level IV NICU with comprehensive strategy for preventing MRSA transmission
 - All infants screened for MRSA on admission
 - Weekly surveillance cultures for MRSA using chromogenic plates
 - Cohorting of positive patients
 - Contact precautions
 - Topical MU treatment of positive patients
 - Chlorhexidine bathing twice weekly
 - Hand hygiene (HH) program
- Every 4 weeks, all infants received MU applied to anterior nares and perirectal area twice daily for 5 days beginning 12/9/13

Methods

- Available archived isolates of invasive CoNS from NICU infants (1/1/14 to 9/1/15) were re-evaluated by MALDI-TOF
- S. caprae isolates were prospectively identified (9/1/15 to 5/4/16) in children’s hospital and four affiliated community hospitals
- MU-minimum inhibitory concentration (MIC) determined by E-test for all prospectively and retrospectively identified S. caprae isolates (susceptible ≤4 μg/mL, high-level resistance ≥512 μg/mL)
- Isolate relatedness assessed by rep-PCR; clonality defined as >97% similar
- The University of Louisville Institutional Board Review approved this study

Results

Table 1: Characteristics of Infants with Positive S. caprae Cultures

<table>
<thead>
<tr>
<th>Key</th>
<th>Gender</th>
<th>Race</th>
<th>Place of birth</th>
<th>Birth weight (grams)</th>
<th>Gestational Age (weeks)</th>
<th>Source</th>
<th>Identification of isolate</th>
<th>Resistance to antimicrobials</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>F</td>
<td>White</td>
<td>NICU A</td>
<td>1025</td>
<td>35</td>
<td>Blood</td>
<td>MU</td>
<td>Resistant to all antimicrobials</td>
</tr>
<tr>
<td>2</td>
<td>M</td>
<td>White</td>
<td>NICU A</td>
<td>976</td>
<td>34</td>
<td>Blood</td>
<td>MU</td>
<td>Resistant to all antimicrobials</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>White</td>
<td>NICU A</td>
<td>1000</td>
<td>36</td>
<td>Blood</td>
<td>MU</td>
<td>Resistant to all antimicrobials</td>
</tr>
<tr>
<td>4</td>
<td>M</td>
<td>White</td>
<td>NICU A</td>
<td>1055</td>
<td>37</td>
<td>Blood</td>
<td>MU</td>
<td>Resistant to all antimicrobials</td>
</tr>
</tbody>
</table>

Table 2: Antibiotic Susceptibilities for S. caprae Isolates

<table>
<thead>
<tr>
<th>Key</th>
<th>ID</th>
<th>Source</th>
<th>Ery</th>
<th>Rif</th>
<th>Van</th>
<th>Gent</th>
<th>Tob</th>
<th>Dapt</th>
<th>MOX</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>Blood</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>Blood</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>Blood</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>Blood</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Figure 1: Dendrogram of All S. caprae Isolates

Figure 2: Timeline

- 7 additional isolates of S. caprae were identified through 5/4/16 (Figure 2)
 - 4 from NICU patients (blood=3, urine=1)
 - 3 from non-NICU patients (blood=1, ankle=1, ear=1)
- Twenty-one archived CoNS isolates from 19 patients were evaluated by MALDI-TOF
- 6 initially biochemically identified as S. epidermidis were re-identified as S. caprae (earliest isolate 12/23/14)
- Demographic and clinical characteristics presented in Table 1
- Spectrum of clinical illness similar to that caused by other CoNS in this population
- Patients were not clustered geographically and review of pseudo-outbreak group did not identify a healthcare worker who was epidemiologically linked
- For the review period: S. caprae was identified in 17% of blood cultures that grew any CoNS (NICU A); S. caprae was identified in 3% of blood cultures that grew any CoNS (NICU B)
- 3/3 non-NICU isolates were susceptible to MU and all systemic antibiotic tested (Table 2)
- 10/10 available NICU isolates had high level MU resistance (Table 2)
- One MU-resistant isolate also was resistant to linezolid, rifampin, and daptomycin
- Rep-PCR grouped the MU-resistant NICU isolates into two primary clusters (Figure 1)

Limitations

- Not all S. caprae isolates were available for testing (n=1)
- Not all archived isolates of CoNS were available for re-identification (n=1)
- CoNS other than S. caprae were not tested for MU resistance
- No archived isolates available from before the initiation of MU prophylaxis in 12/9/13

Conclusions

- S. caprae is a common pathogen in this NICU, but rare in other pediatric/adult patients
- A pseudo-outbreak was associated with MALDI-TOF implementation
- Isolates from the NICU are polyclonal
- It is possible that MU prophylaxis is driving MU resistance of S. caprae

Acknowledgments

- This research is supported by grants from The Children’s Hospital Foundation. We would also like to thank Kosair Charities for their continued support of Dr. Ristagno and the pediatric infectious diseases fellowship program.