The HLA-B*53 / HLA-C*04 Haplotype is Strongly Associated with DRESS Syndrome during Treatment with Raltegravir.

Mark Thomas MD1,2, Chris Hopkins MBBS2, Eamon Duffy BPharm (Hons)3, Daniel Lee MD4, Pierre Louergue MD4, Diego Ripamonti MD5, David A. Ostrov, PhD6, Elizabeth Phillips, MD7,8,9

1. Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
2. Infectious Diseases Department, Auckland City Hospital, Auckland, New Zealand.
3. Department of Internal Medicine, University of California San Diego, California, United States.
4. CIC De Vaccinologie Cochin-Pasteur, Hopital Cochin, Paris, France.
5. Department of Infectious Diseases, Ospedale Papa Giovanni XXIII, Bergamo, Italy.
6. Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, Fla
7. Department of Medicine, Vanderbilt University Medical Center, Nashville TN 37232
8. Department of Pharmacology, Vanderbilt University School of Medicine, Nashville TN 37232
9. Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia

Background

Drug reaction with eosinophilia and systemic symptoms (DRESS) syndrome is a rare, potentially life-threatening, T lymphocyte-mediated, hypersensitivity reaction that may occur during treatment with various drugs. Raltegravir-induced DRESS syndrome has previously been reported in four patients of African ethnicity and one patient of Hispanic ethnicity. We have recently cared for a further patient, of African ethnicity, with raltegravir-associated DRESS syndrome.

Method

We performed HLA testing in four patients who had developed DRESS syndrome during treatment with raltegravir. We then determined the potential site of binding of raltegravir within the HLA-B*53:01 peptide binding groove.

Table: Patient Characteristics

<table>
<thead>
<tr>
<th>Patient</th>
<th>Age/ Gender Ethnicity</th>
<th>Therapy at onset of DRESS syndrome (weeks of treatment)</th>
<th>Main clinical features of DRESS syndrome</th>
<th>Peak Creatinine (µmol/L)</th>
<th>ALT (U/L)</th>
<th>Eosinophil count (cells X10^9/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>44/ M African</td>
<td>Raltegravir (4)</td>
<td>Generalised rash, malaise, diarrhoea, no fever</td>
<td>149</td>
<td>295</td>
<td>1.9</td>
</tr>
<tr>
<td>2</td>
<td>64/ F African</td>
<td>Raltegravir (6)</td>
<td>Generalised rash, facial oedema, lymphadenopathy, no fever</td>
<td>520</td>
<td>2.2</td>
<td>1.9</td>
</tr>
<tr>
<td>3</td>
<td>46/ F African</td>
<td>Raltegravir (8)</td>
<td>Generalised rash, abdominal pain, lymphadenopathy, fever</td>
<td>65</td>
<td>N</td>
<td>1.5</td>
</tr>
<tr>
<td>4</td>
<td>55/ F African</td>
<td>Raltegravir (4)</td>
<td>Generalised rash, malaise, fever</td>
<td>617</td>
<td>N</td>
<td>1.3</td>
</tr>
<tr>
<td>5</td>
<td>39/ M African</td>
<td>Raltegravir (4)</td>
<td>Rash, oral ulcers, fever</td>
<td>147</td>
<td>N</td>
<td>1.3</td>
</tr>
<tr>
<td>6</td>
<td>18/ F Hispanic</td>
<td>Raltegravir (5)</td>
<td>Generalised rash, oedema of facehands and feet, lymphadenopathy, fever</td>
<td>153</td>
<td>N</td>
<td>1.3</td>
</tr>
</tbody>
</table>

Raltegravir is shown within the peptide binding groove of HLA-B*53:01. The four polymorphic differences between HLA-B*53:01 and HLA-B*35:01, in the C-terminal end of the α1 helix are shown in blue cyan and green. The cyan oval indicates the 4-fluorobenzyl group of raltegravir which is predicted to bind to Asn77, the green amino acid present in the risk allele HLA-B*53:01 but not present in the closely related and apparently non-risk allele HLA-B*35:01.

The prevalence of the HLA-B*53:01 allele is approximately 10-20% in many African populations, approximately 6% in American Hispanics, and approximately 0.8% in American Caucasians. Therefore the probability of finding the HLA B*53 allele in three African patients and one Hispanic patient with DRESS syndrome is < 0.0005.

Conclusions

Patients with the HLA-B*53:01 allele are at risk of developing DRESS syndrome when treated with raltegravir. This allele is common (10-30% prevalence) in people of African ethnicity but rare (<1% prevalence) in people of European ethnicity. Computer modelling suggests that raltegravir may bind within the peptide binding groove of the HLA-B*53:01 molecule and alter the repertoire of peptides that are presented to CD8 lymphocytes, thus initiating a delayed hypersensitivity response.