Teddizolid (previously known as torezolid or TR-700) is the second oxazolidinone to be approved in the United States and Europe. Clinical and Laboratory Standards Institute (CLSI) (2016), Breakpoint criteria for tedizolid and comparator agents were those from CLSI (2016), which are used extensively for the treatment of hospital-acquired and ventilator-associated bacterial pneumonia.

Susceptibility profiles for 222 isolates were similar among MSSA and MRSA, regardless of infection type or source of isolate. Among isolates causing BSI or SSSI from the community (Figures 1–3)

• Tedizolid (MIC ≤ 0.02–0.04 µg/mL) was 99.1% susceptible to MSSA and 100.0% susceptible to MRSA, whereas levofloxacin (MIC ≤ 0.03–0.20 µg/mL) was 60.0% susceptible to MSSA and 59.6% susceptible to MRSA; Tigecycline (MIC ≤ 0.50–5.00 µg/mL) was ≥ 100.0% susceptible to MSSA and 100.0% susceptible to MRSA; Daptomycin (MIC ≤ 1.00–4.00 µg/mL) was ≥ 100.0% susceptible to MSSA and 100.0% susceptible to MRSA; Teicoplanin (MIC ≤ 1.00–4.00 µg/mL) was ≥ 100.0% susceptible to MSSA and 100.0% susceptible to MRSA; Vancomycin (MIC ≤ 0.01–2.00 µg/mL) was ≥ 100.0% susceptible to MSSA and 100.0% susceptible to MRSA; Linezolid (MIC ≤ 0.06–1.00 µg/mL) was ≥ 100.0% susceptible to MSSA and 100.0% susceptible to MRSA; Clindamycin (MIC ≤ 0.002–8.00 µg/mL) was ≥ 100.0% susceptible to MSSA and 100.0% susceptible to MRSA; and Ampicillin (MIC ≤ 0.10–16.00 µg/mL) was ≥ 100.0% susceptible to MSSA and 100.0% susceptible to MRSA;

• Susceptibility profiles for 222 isolates were similar among MSSA and MRSA, regardless of infection type or source of isolate. Among isolates causing BSI or SSSI from the community (Figures 1–3)

• Tedizolid (MIC ≤ 0.02–0.04 µg/mL) was 99.1% susceptible to MSSA and 100.0% susceptible to MRSA, whereas levofloxacin (MIC ≤ 0.03–0.20 µg/mL) was 60.0% susceptible to MSSA and 59.6% susceptible to MRSA; Tigecycline (MIC ≤ 0.50–5.00 µg/mL) was ≥ 100.0% susceptible to MSSA and 100.0% susceptible to MRSA; Daptomycin (MIC ≤ 1.00–4.00 µg/mL) was ≥ 100.0% susceptible to MSSA and 100.0% susceptible to MRSA; Teicoplanin (MIC ≤ 1.00–4.00 µg/mL) was ≥ 100.0% susceptible to MSSA and 100.0% susceptible to MRSA; Vancomycin (MIC ≤ 0.01–2.00 µg/mL) was ≥ 100.0% susceptible to MSSA and 100.0% susceptible to MRSA; Linezolid (MIC ≤ 0.06–1.00 µg/mL) was ≥ 100.0% susceptible to MSSA and 100.0% susceptible to MRSA; Clindamycin (MIC ≤ 0.002–8.00 µg/mL) was ≥ 100.0% susceptible to MSSA and 100.0% susceptible to MRSA; and Ampicillin (MIC ≤ 0.10–16.00 µg/mL) was ≥ 100.0% susceptible to MSSA and 100.0% susceptible to MRSA;

• Susceptibility profiles for 222 isolates were similar among MSSA and MRSA, regardless of infection type or source of isolate. Among isolates causing BSI or SSSI from the community (Figures 1–3)

• Tedizolid (MIC ≤ 0.02–0.04 µg/mL) was 99.1% susceptible to MSSA and 100.0% susceptible to MRSA, whereas levofloxacin (MIC ≤ 0.03–0.20 µg/mL) was 60.0% susceptible to MSSA and 59.6% susceptible to MRSA; Tigecycline (MIC ≤ 0.50–5.00 µg/mL) was ≥ 100.0% susceptible to MSSA and 100.0% susceptible to MRSA; Daptomycin (MIC ≤ 1.00–4.00 µg/mL) was ≥ 100.0% susceptible to MSSA and 100.0% susceptible to MRSA; Teicoplanin (MIC ≤ 1.00–4.00 µg/mL) was ≥ 100.0% susceptible to MSSA and 100.0% susceptible to MRSA; Vancomycin (MIC ≤ 0.01–2.00 µg/mL) was ≥ 100.0% susceptible to MSSA and 100.0% susceptible to MRSA; Linezolid (MIC ≤ 0.06–1.00 µg/mL) was ≥ 100.0% susceptible to MSSA and 100.0% susceptible to MRSA; Clindamycin (MIC ≤ 0.002–8.00 µg/mL) was ≥ 100.0% susceptible to MSSA and 100.0% susceptible to MRSA; and Ampicillin (MIC ≤ 0.10–16.00 µg/mL) was ≥ 100.0% susceptible to MSSA and 100.0% susceptible to MRSA;

• Susceptibility profiles for 222 isolates were similar among MSSA and MRSA, regardless of infection type or source of isolate. Among isolates causing BSI or SSSI from the community (Figures 1–3)

• Tedizolid (MIC ≤ 0.02–0.04 µg/mL) was 99.1% susceptible to MSSA and 100.0% susceptible to MRSA, whereas levofloxacin (MIC ≤ 0.03–0.20 µg/mL) was 60.0% susceptible to MSSA and 59.6% susceptible to MRSA; Tigecycline (MIC ≤ 0.50–5.00 µg/mL) was ≥ 100.0% susceptible to MSSA and 100.0% susceptible to MRSA; Daptomycin (MIC ≤ 1.00–4.00 µg/mL) was ≥ 100.0% susceptible to MSSA and 100.0% susceptible to MRSA; Teicoplanin (MIC ≤ 1.00–4.00 µg/mL) was ≥ 100.0% susceptible to MSSA and 100.0% susceptible to MRSA; Vancomycin (MIC ≤ 0.01–2.00 µg/mL) was ≥ 100.0% susceptible to MSSA and 100.0% susceptible to MRSA; Linezolid (MIC ≤ 0.06–1.00 µg/mL) was ≥ 100.0% susceptible to MSSA and 100.0% susceptible to MRSA; Clindamycin (MIC ≤ 0.002–8.00 µg/mL) was ≥ 100.0% susceptible to MSSA and 100.0% susceptible to MRSA; and Ampicillin (MIC ≤ 0.10–16.00 µg/mL) was ≥ 100.0% susceptible to MSSA and 100.0% susceptible to MRSA;

• Susceptibility profiles for 222 isolates were similar among MSSA and MRSA, regardless of infection type or source of isolate. Among isolates causing BSI or SSSI from the community (Figures 1–3)

• Tedizolid (MIC ≤ 0.02–0.04 µg/mL) was 99.1% susceptible to MSSA and 100.0% susceptible to MRSA, whereas levofloxacin (MIC ≤ 0.03–0.20 µg/mL) was 60.0% susceptible to MSSA and 59.6% susceptible to MRSA; Tigecycline (MIC ≤ 0.50–5.00 µg/mL) was ≥ 100.0% susceptible to MSSA and 100.0% susceptible to MRSA; Daptomycin (MIC ≤ 1.00–4.00 µg/mL) was ≥ 100.0% susceptible to MSSA and 100.0% susceptible to MRSA; Teicoplanin (MIC ≤ 1.00–4.00 µg/mL) was ≥ 100.0% susceptible to MSSA and 100.0% susceptible to MRSA; Vancomycin (MIC ≤ 0.01–2.00 µg/mL) was ≥ 100.0% susceptible to MSSA and 100.0% susceptible to MRSA; Linezolid (MIC ≤ 0.06–1.00 µg/mL) was ≥ 100.0% susceptible to MSSA and 100.0% susceptible to MRSA; Clindamycin (MIC ≤ 0.002–8.00 µg/mL) was ≥ 100.0% susceptible to MSSA and 100.0% susceptible to MRSA; and Ampicillin (MIC ≤ 0.10–16.00 µg/mL) was ≥ 100.0% susceptible to MSSA and 100.0% susceptible to MRSA;