HIV-Associated Changes in the Gut Microbiome in Untreated, Treated & Immunologically Controlled Disease

Jesús Mario Luévano Jr.1,2, David Gootenberg1,2, Jeff Paer1, Zoe Rogers1 & Douglas S. Kwon1,2,3

1Ragon Institute of MGH, MIT, and Harvard, Massachusetts General Hospital, Cambridge, 2Harvard Medical School, Boston and 3Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA

Introduction

The human intestine harbors an enormously diverse community of microorganisms, the “microbiome”, with a cumulative genome, or “metagenome”, that has co-evolved with humans to aid in critical host metabolic and immune functions. To better understand the progression of HIV and its effect on the host immune system, we aim to study the differences between the intestinal microbiome of different communities of human patients who are infected or uninfected by HIV.

Prior work looking at patients with acute & and chronic HIV demonstrated altered gut microbiota when compared to a seronegative patient; the effect was more profound with chronic infection [1]. In HIV infected patients, there was an altered functional profile, with enrichment of genes for pathogenic processes such as LPS biosynthesis, bacterial translocation, and pro-inflammatory pathways; at the expense of metabolic expression [2].

Methods

Phenol-chloroform was used to extract DNA from each fecal sample, which was used for 16S rRNA V4 region PCR amplification with a unique barcoded primer. Amplicons were sequenced on the Illumina MiSeq platform. For community analysis, QIIME was used to organize viable sequences into OTUs with >97% similarity in sequence data. Alpha (intra-sample) and beta (inter-sample) diversity was calculated at rarefaction depth of 10,000 seqs/sample.

From patient serum samples we used ELISA kits to measure levels of soluble CD14 (sCD14) and soluble CD163 (sCD163) as indirect markers of microbial induced inflammation, and which has been associated with increased gut epithelial barrier dysfunction.

Conclusions/Future Studies

Our findings demonstrate a complex model for how HIV may alter the gut microbiome and human host health. Our data suggests that bacterial communities, irrespective of means of HIV control, and inflammatory responses, with nuances, could be driven by HIV infection and baseline microbial community structure. However, this alone does not prove the bacteria enriched in HIV infection elicit a pathogenic effect on the host and colonic epithelium as was previously presumed. Further work is planned to isolate individual strain effects on intact and non-intact epithelium.

References


Many thanks to my PI Douglas Kwon, to Bruce Walker, and the Doris Duke Charitable Foundation. This work was supported by HHMI, NIAID, the Ragon Institute, HMS, MIT, and the Doris Duke Clinical Mentorship Grant.

Results and Figures

Figure 1: HIV Infection Significantly Affects the Human Gut Microbiota, Irrespective of ARV or Immunologic Control: The bacterial family composition of the human fecal microbiota for each member of the cohort, sorted by HIV clinical status. Each column represents one individual.

Figure 2: sCD14 Increases with Viremia, while sCD163 Decreases with ARV Treatment: ELISA Quantification of (a) sCD14 and (b) sCD163 serum levels from among cohort sub-groups that were HIV-negative, immunologic controllers, ARV-treated, or chronic untreated. KW test was followed with Dunn’s Post-hoc.

Figure 3: Human Gut Microbial Community Structure Clusters Based on HIV Infection Status: Weighted UniFrac PCoA of the cohort, organized by HIV infection sub-groups, overlaid with Family level taxonomy biplot of the four most influential taxa. Size of the sphere represents effect size, and location is in relation to the microbial community structure.

Figure 4: Diet Consumption Does Not Significantly Differ Amongst HIV Sub-Groups: Dietary Information for Macronutrient Consumption (a) 24 hours prior to sample collection and (b) Monthly Averages for the Year Prior were Taken and Compared Amongst Sub-Groups with No Statistical Differences.

Figure 5: Correlation Amongst Bacterial Phyla: Spearman Correlation by Taxonomic Phyla Abundance. Significant values (p<0.05) colored.

Figure 6: In Vitro Co-culture of Caco2 Cells with Selected Bacterial Strains: Bacterial species that significantly differentiate amongst HIV-1 sub-groups were selected for co-cultured in vitro with the colonic adenocarcinoma Caco2 cell line. (a) Species from two heavily influential bacterial families, Prevotellaceae and Bifidobacteriaceae, were co-cultured. To determine the effect of a ‘second-hit’, a representative strain from each family was co-cultured and exposed to various levels of capsaicin to see the effects of (b) Bacteroides caccae (enriched in HIV uninfected) and (c) Prevotella copri (enriched in HIV-infected).