RESULTS

INTRODUCTION

Avibactam, a novel non-β-lactam β-lactamase inhibitor, inhibits class A, class C and some class D β-lactamases, including extended-spectrum β-lactamases (ESBL), carbapenemases, and the endogenous AmpC of Pseudomonas aeruginosa. Ceftazidime-avibactam combination therapy has been approved in Europe and the US in three different indications. This study examined the in vitro activity of ceftazidime-avibactam and comparator antibiotics against Enterobacteriaceae respiratory tract infections (RTI) in the Asia-Pacific region in 2014-2016 as part of the INFORM surveillance program.

MATERIALS & METHODS

- Non-duplicate isolates from patients with RTI were collected from 26 medical centers in Austria, Hong Kong, Japan, Korea, Malaysia, New Zealand, Philippines, South Korea, Taiwan, and Thailand.
- Susceptibility testing was performed by broth microdilution [1] and interpreted using EUCAST breakpoints for ceftazidime-avibactam [2] and comparator agents.
- Ceftazidime-avibactam was tested with a fixed concentration of 4 µg/mL avibactam.
- The multiplex resistant phenotype category was defined as resistance to at least 3 drug classes, including: carbapenem, aztreonam, piperacillin-tazobactam, meropenem, ticarcillin, amikacin, tigecycline, and colistin.
- Meropenem-nonsusceptible isolates were screened for 3-class β-lactamase genes by PCR and sequencing [3].

RESULTS SUMMARY

- Ceftazidime-avibactam showed potent in vitro activity against the entire collection of Enterobacteriaceae isolates with an MIC90 value of 0.5 µg/mL and 99.0% susceptibility. Notably, ceftazidime-avibactam was active against Enterobacteriaceae that were carbapenem-resistant (n=552) (93.5% susceptible) and Enterobacteriaceae that were carbapenem-resistant (95.7% susceptible) and MDR (100% susceptible) and MDR (91.9% susceptible).
- Ceftazidime-avibactam was 100% active against Enterobacteriaceae that carried a KPC (n=48). However, all isolates harboring an OXA-48-like enzyme also carried a New Delhi metallo-β-lactamase (NDM), thus activity versus Enterobacteriaceae with solely possessing OXA-48 could not be assessed. Isolates carrying an MBL were resistant to ceftazidime-avibactam.
- For P. aeruginosa, ceftazidime-avibactam was more active than meropenem against the entire population and all phenotypic subsets.
- All P. aeruginosa isolates that were resistant to colistin were susceptible to ceftazidime-avibactam (n=35).

CONCLUSIONS

- Enterobacteriaceae from LRTI in the Asia-Pacific region were susceptible to ceftazidime-avibactam except for those isolates harboring a MBL.
- Ceftazidime-avibactam demonstrated potent in vitro activity against P. aeruginosa isolates that were resistant to colistin. A larger proportion of P. aeruginosa isolates were susceptible to ceftazidime-avibactam than meropenem.
- Ceftazidime-avibactam is effective in vitro against Gram-negative bacteria that do not possess MBL.

REFERENCES & ACKNOWLEDGMENTS

This study was sponsored by President’s Office, NIH in collaboration with the NLM and NINDS. The actual involvement of NIH in the design and conduct of this study and development of this paper is limited. This work was an employee work undertaken at NIH and all of the results, and any opinions, findings, conclusions, or recommendations expressed in this paper are those of the authors and do not necessarily reflect the views of NIH.