An Assessment of the Validity of the Comprehensive Severity Index as a Measure of Severity of Influenza Infection in Children

Dat Tran, MD, MS,¹ Susan E Richardson, MD,² Moshe Ipp, MD,² Suzanne Schuh, MD,² Ari Bitun, MD, MSc,² Andrew Paterson, MD²
¹Oregon Health Authority, Portland, OR, USA; ²The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada

• Influenza is an important illness associated with significant morbidity, mortality and healthcare burden.
• There is significant variation in severity of influenza infection, including among healthy individuals.
• A standardized quantitative severity score that reflects the breadth of influenza complications would prove valuable in epidemiologic analyses of risk factors for severe influenza infection.
• The maximum Comprehensive Severity Index score (maxCSI) is a composite, continuous measure of illness severity, based on the degree of individuality of all individual symptoms and signs of a patient’s disease or illness.
• The Comprehensive Severity Index contains metrics of age-specific criteria for influenza as well as related complications.²

Background

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Participant</th>
<th>Total (n)</th>
<th>Stratified by maxCSI</th>
<th>MaxCSI</th>
<th>AUC (95% CI)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, years</td>
<td><60</td>
<td>206/312</td>
<td>0.88 (0.84–0.91)</td>
<td><0.0001</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>≥60</td>
<td>105/312</td>
<td>0.77 (0.73–0.81)</td>
<td>0.002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sex</td>
<td>Male</td>
<td>157/317</td>
<td>0.89 (0.86–0.92)</td>
<td><0.0001</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>157/317</td>
<td>0.72 (0.69–0.75)</td>
<td>0.008</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Influenza type</td>
<td>Pandemic H1N1</td>
<td>264/312</td>
<td>0.91 (0.88–0.93)</td>
<td>0.57</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Seasonal influenza A</td>
<td>115/317</td>
<td>0.86 (0.82–0.89)</td>
<td>0.11</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Seasonal influenza B</td>
<td>128/317</td>
<td>0.85 (0.82–0.88)</td>
<td>0.04</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Results

Table 3. Association of maxCSI and other variables with hospitalization for influenza.

<table>
<thead>
<tr>
<th>Variable</th>
<th>OR (95% CI)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Influenza complications</td>
<td>1.67 (1.39–2.01)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Presence of hospitalization</td>
<td>1.49 (1.27–1.73)</td>
<td>0.002</td>
</tr>
<tr>
<td>Male sex</td>
<td>1.31 (1.25–1.38)</td>
<td><0.0001</td>
</tr>
<tr>
<td>African ancestry</td>
<td>1.43 (1.01–1.85)</td>
<td>0.04</td>
</tr>
<tr>
<td>Age >60 years</td>
<td>1.72 (1.22–2.40)</td>
<td>0.002</td>
</tr>
<tr>
<td>High-school education</td>
<td>1.39 (1.21–1.58)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Hospitalization adjusted for maxCSI</td>
<td>1.72 (1.16–2.55)</td>
<td>0.007</td>
</tr>
</tbody>
</table>

Discussion

• maxCSI and influenza subtype were independently associated with influenza complications.
• maxCSI and antiviral treatment were independently associated with hospitalization.
• maxCSI had good discriminatory ability (AUC = 0.88) for influenza complications and excellent discriminatory ability (AUC = 0.84) for hospitalization.
• maxCSI was well calibrated for both outcomes.
• maxCSI (alone) was as good as a predictor of both outcomes as the multivariable model comprising maxCSI age, household crowding, influenza type/subtype, and antiviral therapy.

Conclusion

maxCSI can be leveraged to increase statistical power in epidemiologic studies aimed at identifying factors associated with severe influenza.

References

Acknowledgments

Cheryl Ameen, Julie Coste, Suganya Lee, Calvin Liu, Nadine Lombardo-Han, Ruth Mathew, Peegrima Peralta, David Raphael, Hilary Redl, Kim Simpson

Contact

Dat Tran; 1-877-873-3059; dat.tran@hsge.state.on.ca

Figure 1. ROC curves for the prediction of influenza complications and hospitalization.

Table 4. AUC and Hosmer-Lemeshow goodness of fit test for the prediction of influenza complications and hospitalization.

Table 2. Association of maxCSI and other variables with respiratory and/or extra-respiratory influenza complications.

Table 1. Characteristics of participants in the study sample.

Methods

• To assess the performance of the maxCSI in a population of children medically-attended, laboratory-confirmed influenza.

Ethics

• Ethics approval obtained from SickKids Research Ethics Board

Participants

• 321 children prospectively recruited from 12/2007 through 3/2010

Procedure

• Collection of standard data collection form

Study Outcomes

• Primary outcome: respiratory and/or extra-respiratory influenza complications based on physician diagnosis

Statistical Methods

• Descriptive statistics produced for participant characteristics

• Univariate (maxCSI as sole predictor variable) and multivariable logistic regression (maxCSI, age, sex, household crowding, influenza type/subtype, early antiviral therapy) models constructed for each outcome

• Presence of household crowding defined as equalized crowding index (applying the Canadian Disadvantaged Occupancy Standard): ≤ 1.0

• Early antiviral therapy defined as receipt within 48 hours of illness onset

• Assessment of discrimination by plotting the receiver operating characteristic (ROC) curve and calculating the area under the ROC curve (AUC): AUC values ‘ranked’ as excellent [>0.90], good [0.80 and <0.90], fair [0.70 and <0.80] and poor (<0.70)

• Assessment of calibration using the Hosmer-Lemeshow C statistic²

• AUCs of univariate and multivariable models compared using method of DeLong et al³

• P < 0.05 considered statistically significant

• Data analyzed in SPSS (SPSS version 24, SPSS Inc, Chicago, IL, USA)