Comparison of Short and Long Courses of Antibiotics in Patients with Prosthetic Joint Infection: A Systemic Review and Meta-analysis

Ronan Hsieh, M.D.1, Hung-Yen Yen, M.S.2, Chung-Yen Huang, M.S.2, Chien-Chang Lee, M.D., Sc.D.3
1Department of Medicine, Albert Einstein Medical Center, Philadelphia PA, USA. 2Department of Medicine, National Taiwan University, Taipei, Taiwan. 3Department of Emergency Medicine, National Taiwan University, Taipei, Taiwan

Background
- Current treatment for prosthetic joint infections (PJI) requires prompt surgical intervention and months to years of lifelong course of oral and/or intravenous (IV) antibiotics. However, previous studies on the optimal course of antibiotics for PJI showed inconsistent results1-3.

Objectives
- To conduct a systematic review and meta-analysis on the antibiotics treatment of PJI with a hypothesis that a short course and long course of antibiotics are similarly effective.

Methods
- Literature search
 - Database: PubMed and Embase
 - Pre-defined search term: three separate queries composed of MeSH or EMTREE and title/abstract key words for three focuses: antibiotics, treatment duration, and PJI (Supplement table 1).
 - We also screened references cited in included studies not retrieved from the initial search. We did not limit our search based on study type.
 - Excluded studies: PJI caused by atypical bacteria and non-bacterial pathogens (e.g. Mycobacterium, Brucella, fungus, virus).
 - Two authors independently screened the retrieved studies for three rounds (title/abstract, full text, extraction). Discrepancies were resolved by the involvement of the senior author. Data of the final included studies were extracted.

Results

Study analysis
- Primary endpoints: cure rate, recurrence rate, mortality rate, complication rate and rate of secondary treatments
- Definition of treatment failure: PJI-related death, re-infection and persistent infection
- Quality assessment of studies:
 - Randomized controlled trials (RCTs): Modified Jadad scale
 - Observational studies: Newcastle-Ottawa Quality Assessment
- Statistical analysis: DeSimonian and Laird method for random effect models. Heterogeneity was quantified with I² statistics.

Publication bias was assessed by Begg’s and Egger’s tests.

Study inclusion
- A total of 10 studies and 856 patients were included in our study.
 - 1 RCT, 9 observational studies
 - 9 studies focused on THA and TKA, while 1 study also included ankle, shoulder, and elbow arthroplasties.
 - In 5 studies (including one RCT), patients were treated with debridement and implant retention (DAIR); in 3 studies, patients were treated with staged exchange arthroplasty (SER); in 2 studies, patients received mixed procedures.

- 5 studies investigated the duration of IV antibiotics, while the other 5 studies focused on the total duration of IV and oral antibiotics.

- 1972 citations identified from literature search, 1163 from PubMed and 609 from Embase database

- 228 overlapped studies excluded

- 1731 studies excluded after first round (screening of titles and abstracts)

- 13 studies included for full-text review

- 0 studies identified from the reference lists of included studies

- 13 studies included for full-text review

- 3 studies excluded because of lack of comparison of the outcomes of a long and short course of antibiotics

- 10 articles included in our study

- Main meta-analysis
 - 9 out of 10 studies showed a short course and a long course of antibiotics were similarly effective.
 - Our meta-analysis also showed similar outcomes between a short course and a long course of antibiotics (RR 0.87 [0.62, 1.22]), with moderate heterogeneity (I² 46.6%).

- Table 1: Subgroup analysis

<table>
<thead>
<tr>
<th>Subgroup analysis (study number)</th>
<th>Difference in rate of treatment failure</th>
<th>Heterogeneity analysis (I²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>All studies (10)</td>
<td>No significant difference (RR 0.87 [0.62, 1.22])</td>
<td>Moderate (46.6%)</td>
</tr>
<tr>
<td>Studies graded as good or fair (7)</td>
<td>No significant difference (RR 0.94 [0.61, 1.44])</td>
<td>High (62.2%)</td>
</tr>
<tr>
<td>Subgroup analysis of treatments:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treatment with IV antibiotics (4)</td>
<td>No significant difference (RR 1.04 [0.51, 2.12])</td>
<td>High (50.9%)</td>
</tr>
<tr>
<td>Surgical intervention with DAIR (6)</td>
<td>No significant difference (RR 0.76 [0.42, 1.34])</td>
<td>Moderate (52.9%)</td>
</tr>
<tr>
<td>Implant removal (4)</td>
<td>No significant difference (RR 0.71 [0.45, 1.11])</td>
<td>Low (0.0%)</td>
</tr>
<tr>
<td>Anatomical sites:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Knee (3)</td>
<td>No significant difference (RR 0.85 [0.46, 1.58])</td>
<td>Low (0.0%)</td>
</tr>
<tr>
<td>Hip (4)</td>
<td>No significant difference (RR 0.81 [0.35, 1.88])</td>
<td>Low (0.0%)</td>
</tr>
<tr>
<td>Geographical areas:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>USA (3)</td>
<td>No significant difference (RR 0.62 [0.37, 1.02])</td>
<td>Low (0.0%)</td>
</tr>
<tr>
<td>Europe (6)</td>
<td>No significant difference (RR 0.93 [0.58, 1.48])</td>
<td>High (65.0%)</td>
</tr>
</tbody>
</table>

Publication bias
- There was no significant publication bias in the 10 included studies (Begg’s test p=0.107, Egger’s test p=0.998).
- We showed Funnel’s plot and Galbraith’s plot as below.

Conclusions
- Our pooled meta-analysis and subgroup analysis showed that a short course of antibiotics was as effective as a long course of antibiotics for treatment of PJI, regardless of the type and location of surgical intervention patients received.

Reference

Email: Hsiehron@einstein.edu