OBJECTIVE

These data support a potential role for MEM/NAC for treatment of isolates harboring Class A serine carbapenemases.

Hypothesis

MEM/NAC MICs for the 12 isolates were used in Table 1. All isolates demonstrated in vitro resistance to meropenem (MIC ≥ 4 μg/mL).

RESULTS

Bacterial Density Studies

- The results of the bacterial density studies for each isolate are presented in Table 1.
- The bacterial density of the MEM/NAC-treated isolates was significantly lower than that of the untreated control.

CONCLUSIONS

- The combination of membranase-resistant organisms, human-simulated ELF exposures of meropenem/nacubactam combination demonstrated remarkable in vivo efficacy.
- Data supports a potential role for nacubactam in combination with meropenem for treatment of lung infection due to Class A carbapenemase-producing Enterobacteriaceae.
- Future studies are warranted to further investigate the potential role of MEM/NAC in the treatment of lung infections caused by Class A carbapenemase-producing Enterobacteriaceae.

May 2018 Poster 1368

Hartford HealthCare
Connect to healthcare

METHODS

Neutrophils (200,000 cells/mL) were used in all in vitro testing.

RESULTS

Bacterial Density Studies

- The bacterial density study for each isolate is presented in Table 1.
- The bacterial density of the MEM/NAC-treated isolates was significantly lower than that of the untreated control.

CONCLUSIONS

- The combination of membranase-resistant organisms, human-simulated ELF exposures of meropenem/nacubactam combination demonstrated remarkable in vivo efficacy.
- Data supports a potential role for nacubactam in combination with meropenem for treatment of lung infection due to Class A carbapenemase-producing Enterobacteriaceae.
- Future studies are warranted to further investigate the potential role of MEM/NAC in the treatment of lung infections caused by Class A carbapenemase-producing Enterobacteriaceae.