Background

- **Klebsiella pneumoniae** is a frequently multidrug-resistant organism with a high propensity to produce biofilm.
- K. pneumoniae is the most common carbapenem-resistant Enterobacteriaceae (CRE), which have been categorized as an urgent threat by the CDC and is associated with high mortality rates up to 50%-6
- The relationship between **K. pneumoniae** biofilm formation and antimicrobial resistance has not been extensively described and data is limited:
 - Extensively drug resistant (XDR) **K. pneumoniae** urinary isolates from a rehabilitation center formed biofilm at higher rates than MDR strains and susceptible strains (91.1% vs. 67.5% vs. 70.8%, respectively).
 - Biofilm forming **K. pneumoniae** from a single-center hospital more likely produced ESBL versus non-biofilm formers (83.6% vs. 14.4%, p < 0.01)\(^7\)
 - **Biofilm** forming **K. pneumoniae** isolates from a single-center hospital outbreak were more likely to produce biofilm versus carbapenem susceptible isolates (p < 0.05)\(^8\)

Methods

Isolate susceptibility

- Based on 2017 CLSI breakpoints, except for tigecycline, colistin, and fosfomycin as CLSI breakpoints were unavailability

Categorization for MDR and XDR was based on CDC/ECDC consensus\(^9\)

- **Multidrug-resistant (MDR):** non-susceptible to ≥ 1 agent in ≥ 3 out of 16 antimicrobial categories
- **Extensively drug-resistant (XDR):** non-susceptible to ≥ 1 agent in all but ≤ 2 out of 16 antimicrobial categories

The antimicrobial categories were collapsed to 9 groups below (Table 1)

Statistical analysis (SAS 9.2):

- Differences assessed with Chi-square or Fisher’s exact tests for dichotomous variables and student t-test for continuous variables
- Predictors of strong biofilm formation were identified with logistic regression

Results

Table 1. Prevalence of Antimicrobial Resistance According to Biofilm Formation

<table>
<thead>
<tr>
<th>Variable</th>
<th>Total Cohort (n=93)</th>
<th>Weak Biofilm Formation (n=47)</th>
<th>Strong Biofilm Formation (n=46)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multidrug-resistant (MDR), n (%)</td>
<td>81 (87.1)</td>
<td>46 (97.9)</td>
<td>35 (76.1)</td>
<td>0.002</td>
</tr>
<tr>
<td>Extensively drug-resistant (XDR), n (%)</td>
<td>25 (26.9)</td>
<td>12 (25.5)</td>
<td>13 (28.3)</td>
<td>0.77</td>
</tr>
<tr>
<td>Number of Resistant Categories (n=16), Med</td>
<td>13</td>
<td>13</td>
<td>11.5</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Antimicrobial Groups (n=9)

Penicillin / β-lactamase inhibitors, n (%)	79 (84.9)	46 (97.9)	33 (71.7)	0.0004
Cephalosporins, n (%)	82 (88.2)	46 (97.9)	36 (78.3)	0.003
Monobactams, n (%)	73 (78.5)	45 (95.7)	28 (60.9)	<0.0001
Carbapenems, n (%)	70 (75.3)	44 (93.6)	26 (56.5)	<0.0001
Protein Synthesis Inhibitors, n (%)	80 (86.0)	46 (97.9)	34 (73.9)	0.001
Fluoroquinolones, n (%)	73 (78.5)	45 (95.7)	28 (60.9)	<0.0001
Folate pathway inhibitors, n (%)	66 (71.0)	37 (78.7)	29 (63.0)	0.09
Fosfomycin, n (%)	61 (65.6)	29 (61.7)	32 (69.6)	0.42
Colistin, n (%)	11 (11.8)	8 (17.0)	3 (6.5)	0.12

Figure 1. Biofilm Categorization

References

Conclusion / Discussion

- Previously published data describe resistant **K. pneumoniae** isolates to be associated with biofilm formation. However, our study comparatively:
 - Consists of diverse collections of isolates from multiple centers
 - Uses multivariate statistical analysis
 - Redefines biofilm quantification to overcome methodological limitations
 - Standardization of biofilm methods is imperative
 - Carbenem resistant **K. pneumoniae** were 91% less likely to form biofilm
 - The inverse relationship between biofilm formation and antibiotic resistance suggests there may be a trade-off for survival
 - Potential clinical impact: allows clinicians to better understand the optimal treatment approach for their patients if biofilm formation is present

Acknowledgements: The information presented is those of the authors and do not necessarily reflect the position or policy of the United States Department of Veterans Affairs. This work was supported in part, by the Office of Academic Affairs (DAA) at the Department of Veterans Affairs, and by the COIN: Center of Innovation in Long-Term Services and Supports for Vulnerable Veterans: Providence, RI.

Hypothesis / Objectives

- **Hypothesis:** There is an association between specific **K. pneumoniae** antimicrobial resistance and biofilm formation

- **Objectives:**
 - Determine biofilm formation and antimicrobial susceptibility for each **K. pneumoniae** isolate
 - Identify if an association exists between **K. pneumoniae** biofilm formation and specific antibiotic resistance

Methods

Organisms:

139 **K. pneumoniae** isolates were accessed from the CDC (n=66), BEI (n=36), ATCC (n=3), and patient isolates from Providence VA Medical Center and Rhode Island Hospital (n=34)

Biofilm Quantification:

- Modified Crystal Violet Method (OD\(_{570}\)\(^9\)

- **Biofilm formation** was defined by tertile cut-points\(^10\)

Figure 1. Biofilm Categorization

K. pneumoniae Isolates (n=139)

- **Weak biofilm formation**
 - OD\(_{570}\) > 0.16 (n=47 isolates)
- **Moderate biofilm formation**
 - 0.16 < OD\(_{570}\) < 0.59 (n=46 isolates)
- **Strong biofilm formation**
 - OD\(_{570}\) > 0.59 (n=46 isolates)

Final Analysis (n=93)

Tertile Cut-Points

- **Biofilm OD\(_{570}\) < 0.16 (n=47 isolates)**
- **Moderate Biofilm OD\(_{570}\) = 0.16 - 0.59 (n=46 isolates)**
- **Strong Biofilm OD\(_{570}\) > 0.59 (n=46 isolates)**

Results

- 93 isolates remained upon removal of moderate biofilm formers
- MDR isolates were more common among weak biofilm formers (79.7%)
- XDR isolates were similar between groups (25.5% vs. 28.3% p=0.77)
- Resistance to penicillin/β-lactamase inhibitors, cephalosporins, monobactams, carbenapens, protein synthesis inhibitors, or fluoroquinolones were more common among weak biofilm formers (p=0.05)

Predictors regression model results:

- Carbenem resistance is inversely associated with strong biofilm
 - OR 0.09 (95% CI 0.02 – 0.33)

Klebsiella pneumoniae Biofilm Formation (n=93)

- **Optical Density (OD)**
 - OD = 0.0004
 - OD = 0.001
 - OD = 0.003
 - OD = 0.0001
 - OD = 0.0001

Contact information: Jaclyn Cusumano, PharmD, Jaclyn.Cusumano@gmail.com