Efficacy of cochleated amphotericin B (C-AMB) in mouse models of oropharyngeal and vulvovaginal candidiasis

Jigar V. Desai, PhD1, Ruying Lu, BS2, Alexandra Freeman, MD1, Edmund Tramonti, MD, FIDSA1, Jerry Jabbour2, Raphael J. Mannino, PhD1 and Michail S. Lionakis, MD, ScD1

1Fungal Pathogenesis Section, LCIM/NIAD/NIH, Bethesda, MD, USA; 2Matinas BioPharma Inc., Bedminster, NJ; 3National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA

Abstract

Introduction: *Candida albicans* causes debilitating mucosal infections in patients with inherited susceptibility to chronic mucocutaneous candidiasis (CMC) such as oropharyngeal candidiasis (OPC) and vulvovaginal candidiasis (VVC), which often require long-term azole-based treatment. Due to the high incidence of azole resistance in these patients, alternative treatment options are desirable. Acquired resistance against amphotericin B (AMB) has not been documented but parenteral administration of AMB is associated with nephrotoxicity and infusion reactions.

Cochleated AMB (C-AMB) is a new formulation of AMB designed for oral administration and thus an attractive treatment option for OPC and VVC. The purpose of our study was to assess the efficacy of C-AMB in mouse models OPC and VVC.

Methods: IL-17 signaling deficient mice (Act1−/−) were infected with a clinical isolate of *C. albicans* in models of OPC and VVC. From day 1 post-infection (pi) through day 4 pi, mice were treated once daily via oral gavage with C-AMB or placebo or intraperitoneal AMB-deoxycholate (AMB-d). At day 5 pi, the mice were euthanized and tongue tissue (OPC) or vaginal tissue and vaginal tissue (VVC) were harvested to quantify fungal burden.

Results: During OPC, mice treated with C-AMB (25 or 83.5 mg/kg/day) displayed significantly reduced tongue fungal burden compared to placebo-treated mice and comparable to that observed in mice treated with intraperitoneal AMB-d (25 mg/kg/day). During VVC, mice treated with C-AMB exhibited significantly decreased fungal burden in vaginal tissue, but not vaginal fluid, relative to placebo-treated mice.

Conclusions: Oral administration of C-AMB in IL-17-signaling deficient mice results in a reduction in tongue and vaginal tissue fungal burden during mucosal *C. albicans* infections. Ongoing studies are aimed at characterizing the distribution of C-AMB in mouse mucosal tissues and examining C-AMB efficacy relative to fluconazole.

Background and Rationale

Candida albicans and the host

- High disease burden for mucosal candidiasis
 - Oropharyngeal candidiasis: ~2 million cases/year globally
 - Vulvovaginal candidiasis: ~138 million cases/year globally
- High cost for disease management
- High incidence of resistance with standard of care antifungals

Rationale

- **High disease burden for mucosal candidiasis**
 - Oropharyngeal candidiasis: ~2 million cases/year globally
 - Vulvovaginal candidiasis: ~138 million cases/year globally
- **High cost for disease management**
- **High incidence of resistance with standard of care antifungals**

Results

Oral administration of **cochleated amphotericin B** (C-AMB) effectively reduces tongue fungal burden during OPC in mice.

Summary

- Oral administration of C-AMB in IL-17-signaling deficient mice results in a reduction in tongue tissue fungal burden during OPC.
- Orally administered C-AMB shows comparable efficacy to intraperitoneal AMB-d.
- Oral administration of C-AMB is efficacious at reducing vaginal tissue fungal burden during VVC in mice.

Acknowledgement

Lionakis lab members for their input in this work and the Comparative Medicine Branch animal facilities for technical assistance and animal handling.

Financial support: CRADA between Matinas BioPharma and Dr. Lionakis