ABSTRACT (Modified)

Background: Challenges due to multidrug resistant Gram-negative bacterial pathogens such as *P. aeruginosa* (PSA) are increasing globally. Suboptimal antimicrobial therapy of infections caused by PSA is associated with increased morbidity and mortality. As a result, antimicrobial susceptibility (NS) studies are pivotal to identifying trends in antimicrobial resistance that inform decisions regarding choice of antimicrobial therapy. This study assessed the in vitro potencies of 7 antimicrobial agents including ceftolozane/tazobactam against PSA collected from numerous sites across the US.

Methods: Multiple US hospitals provided non-duplicate respiratory and blood isolates of PSA for potency testing. MICs against PSA were determined using broth microdilution methods according to CLSI for 7 antimicrobials with antimicrobial activity: aztreonam, cefepime, ceftazidime, cefepime/tazobactam, imipenem, meropenem and piperacillin/tazobactam. NS was defined per CLSI or FDA breakpoint criteria.

Results: Thirty-five US hospitals geographically spread across the US provided total of 1214 PSA isolates. Of the antibiotics assessed, NS to C/T was the highest at 95% with an MIC\(_{90}\) of 0.5 mg/mL and MIC\(_{2}\) of 2 mg/mL. In comparison, other NS (MIC\(_{90} /\) MIC\(_{2}\)) were as follows: aztreonam 66% (8 / 32); cefepime 76% (4 / 32); ceftazidime 78% (4 / 64); imipenem 68% (2 / 16); meropenem 74% (0.5 / 16); and piperacillin/tazobactam 73% (8 / 128).

Conclusions: For this geographically diverse PSA population, ceftolozane/tazobactam demonstrated the highest overall susceptibility (95%). Other antimicrobial agents included carbapenem susceptible isolates over 66-78%. In the era of escalating PSA resistance to the β-lactams, the potency of ceftolozane/tazobactam may represent an important clinical option.

INTRODUCTION

Challenges due to multidrug resistant Gram-negative bacterial pathogens such as *P. aeruginosa* are increasing globally.1

Suboptimal antimicrobial therapy of infections caused by *P. aeruginosa* is associated with increased morbidity.2

Antimicrobial susceptibility (%) studies are fundamental to identifying trends in antimicrobial resistance that inform decisions regarding choice of antimicrobial therapy.2

OBJECTIVES

To assess the in vitro potency of 7 antimicrobial agents including ceftolozane/tazobactam against *P. aeruginosa* collected from numerous sites across the US.

MATERIALS & METHODS

- Thirty-five US hospitals collected non-duplicate respiratory or blood isolates of *P. aeruginosa* (n=1214) from adult inpatients over 2017-2018.
- Isolates were shipped on trypticase soy agar slants and once received at the central processing laboratory (Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, CT, USA) isolates were transferred onto trypticase soy agar plates containing 5% sheep blood and 0.5% minimum inhibitory concentration (MIC) determination.
- MIC trays were prepared using the Biomek 3000 (Beckman Instruments, Inc., Fullerton, CA). To verify correct inoculum, colony counts were performed on each isolate.
- MICs for aztreonam, ceftolozane/tazobactam, cefepime, ceftazidime, imipenem, meropenem and piperacillin/tazobactam were tested using Clinical Laboratory Standards Institute (CLSI) broth microdilution methods.3
- As recommended by CLSI, *K. pneumoniae* 700603 and *P. aeruginosa* 27853 were utilized as quality control strains.
- Isolates were characterized using CLSI susceptibility breakpoints presented in Table 1.
- *P. aeruginosa* were classified as multidrug resistant (MDR) if they were resistant to ≥3 classes of antimicrobials (CIP, MIC ≥ 4 mg/L; IMP, MIC ≥ 8 mg/L; CAZ, MIC ≥ 32 mg/L; TZP, MIC ≥ 128 mg/L; and TOB, MIC ≥ 16 mg/L).

RESULTS

- Eighteen percent of the *P. aeruginosa* (n=216) were identified as MDR by reference broth microdilution methods.
- The MIC for which 50% and 90% were inhibited (MIC\(_{50}\) and MIC\(_{90}\)) for all agents are noted in Table 1.
- In this study, C/T and CAZ displayed the highest susceptibility, followed by FEP.
- All other antimicrobial agents, consisting of representative examples across classes, demonstrated a range of 66-76% susceptibility.
- The MIC distribution for all agents is displayed in Figure 1, further highlighting the relative activity of C/T as compared with the other agents.

CONCLUSIONS

- In this geographically diverse *P. aeruginosa* population, ceftolozane/tazobactam demonstrated the highest overall susceptibility (95%).
- Other antimicrobial agents including carbapenems displayed susceptibilities of 66-78%.
- In the era of escalating *P. aeruginosa* resistance to the β-lactams, the potency of ceftolozane/tazobactam may represent an important clinical option.

ACKNOWLEDGMENTS

We acknowledge Sara Swagerty, Jessica Cunningham, Elizabeth C, Kim Greenwald, Michelle Hoagham, James Kilday, Lauren McCullen, Ana Molina, Alice Pagdant, Deborah Sarini, Sean Sastioni, Courtney Shastioni, Nicole Sekela, Eila McIlhiney and Jennifer Taipale-House from the Center for Anti-Infective Research and Development, Hartford, CT for their dedication to exceptional technical quality and assistance with the conduct of the study. This study was funded by Merck & Co.

REFERENCES

1. Safa Almarzoky Abuhussain, 1,2, Christina A. Sutherland1, David P. Nicolau1,2

1 Center for Anti-Infective Research and Development, Hartford Hospital, 80 Seymour Street, Hartford, CT 06102

2 Division of Infectious Diseases, Hartford Hospital, Hartford, CT, USA

Figure 1. MIC distribution of aztreonam (ATM), ceftolozane/tazobactam (C/T), cefepime (FEP), ceftazidime (CAZ), imipenem (IMP), meropenem (MEM) and piperacillin/tazobactam (TZP).