ABSTRACT (MODIFIED)

Vaccinum in acute kidney injury is driven by elevated peak plasma concentrations (CMAX) rather than CMIN. Further, an identified PK/TD target of CMAX rather than CMIN may provide a more accurate measure of vancomycin acute kidney injury. Conclusions

RESULTS

![Figure 1. Boxplot of CMAX vs Kim

![Figure 2. Observed vs. Predicted Plots for the Individual Animals](image)

![Figure 3. AUC(0-24h) (mg/L) vs urine volume (mL)](image)

![Figure 4. PK Exposure vs Uraemic Biomarker](image)

![Figure 5. Relationship between PK Exposure and Uraemic Biomarker](image)

Figure 1. Boxplot of CMAX vs Kim

Figure 2. Observed vs. Predicted Plots for the Individual Animals

Figure 3. AUC(0-24h) (mg/L) vs urine volume (mL)

Figure 4. PK Exposure vs Uraemic Biomarker

Figure 5. Relationship between PK Exposure and Uraemic Biomarker

CONCLUSIONS

- Exposure related vancomycin kidney injury is driven by elevated peak plasma concentrations (CMAX) rather than elevated troughs (CMIN).
- These findings may have clinical implications for vancomycin monitoring strategies.
- Further clarification of the drivers of VRI are needed to improve dosing regimens that maximize efficacy while minimizing toxicity.

AUTHOR DISCLOSURE

Research reported in this publication was supported by the National Institutes of Health through the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) and the National Institute on Aging (NIA). The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIDDK or NIA. Conflict of interest at time of publication: No conflicts of interest.