A 58 year old man presented with three progressive necrotic ulcerative plaques in bilateral lower extremities present for 1 month. Lesions began as four papules 5-6 days after a hot springs exposure and enlarged to become indurated, non-painful, erythematous plaques (Figures 1a-b) despite treatment with doxycycline and amoxicillin/clavulanate for presumed cellulitis.

He had no other associated systemic symptoms of fevers, chills, night sweats, weight loss and swollen lymph nodes.

Epidemiologic History: He is an office-worker, an ex-smoker and occasionally drinks alcohol. He has multiple pets including a dog, an iguana, multiple snakes, birds and fish. He denies any unusual dietary habits such as raw meat or unpasteurized dairy.

Physical Examination: The patient was a well-appearing adult male in no acute distress. The blood pressure was 131/87mm Hg, pulse 77 beats per minute, temperature 97°F (36.1°C), and respirations 20 breaths per minute. On skin examination he had two well-circumscribed, indurated, erythematous plaques approximately 5x2 cm and 10x6 cm in diameter on the right lower extremity, the larger plaque was medial and proximal to the ankle and the smaller plaque anterior and distal to the knee. The inferior lesion had central ulceration and necrosis (Figure 1a). An approximately 3x3 cm indurated, erythematous, scaly plaque was present proximal to the left ankle (Figure 1b).

Pertinent lab findings: White blood cells 10.8x10^3 cells/µl, platelets 463 x10^3 cells/µl, HIV/Hg electrophoresis/immunoglobulins/lymphocyte subsets normal.

History and Examination

Diagnostic Studies

• MRF of the bilateral lower extremities: diffuse subcutaneous inflammatory changes in the right lower extremity and subcutaneous inflammatory changes in the medial left lower extremity
• Pertinent lab findings: Mild eosinophilia (White blood cells 10.8x10^3 cells/µl, absolute eosinophil count 778 cells/µl), platelets 463 x10^3 cells/µl, HIV/Hg electrophoresis described as broad hyphae with ribbon-like architecture with rare septae concerning for cutaneous agent of mucormycosis on Grocott’s methamine silver (GMS) stain (Figure 2).
• Tissue samples were plated directly onto Sabouraud-dextrose agar and on day 3 of culture, fine white hyphae were noted to be growing on agar plates (Figure 3).
• Skin punch biopsy specimens with fungal elements described as broad hyphae with ribbon-like architecture were taken from hospital, with wound-vacuum system in place (Figure 4) from abnormal-appering areas, but all surgical margins at the site of amputation were clear. CT angiography showed no evidence of vascular involvement.
• Tissue samples sent for histopathology showed persistent presence of the organism (Figure 5) from abnormal-appearing areas, but all surgical margins at the site of amputation were clear.

Tissue sample and subculture of growth from Sabouraud-dextrose agar plate were sent to reference laboratories. Three weeks after admission the organism was identified as Pythium insidiosum via 18S ribosomal RNA gene sequencing.

References

Discussion

Pythium insidiosum is a fungus-like oomycete found in standing water which mainly infects non-human mammals. Pythiosis can occur in the immunocompetent, but hemoglobinopathies and immunocompromise are risks for severe disease. Rare cases are reported in North America. Human pythiosis is described predominantly in Thailand. Four clinical syndromes have been described: cutaneous/subcutaneous, vascular, ocular, and disseminated. Mortality rates of cutaneous/subcutaneous and ocular pythiosis may be low, although treatment often involves aggressive surgical debridement and excision. In one series, the vascular and disseminated forms carried a 40% and 100% mortality rate, respectively.

Most cases have been linked to exposures to natural bodies of water. The New Mexico Department of Health was notified and investigated the hot spring where the exposure was thought to have occurred. No environmental samples were taken.

Human pythiosis is frequently mistaken for a cutaneous or subcutaneous lesion due to similar histopathology. Management is based on case reports given disease rarity in human hosts.

Pythium insidiosum is resistant to traditional antifungals as it lacks ergosterol in its cytoplasmic membrane.

An experimental immunotherapeutic Pythium insidiosum vaccine (Pan American Vet Lab) developed for equine and canine pythiosis has been utilized in human cases. Human and animal data suggest an approximate 60% efficacy rate.

Due to lack of known effective medical therapy, early and radical surgical debridement with confirmed negative tissue margins is recommended and necessary for effective treatment.

Treatment and Clinical Course

• Prior to identification of P. insidiosum, treatment with intravenous liposomal amphotericin B 5mg/kg daily and oral posaconazole 300mg daily was initiated for presumed mucormycosis. Serial surgical debridements were performed. Amphotericin B solution was also irrigated into the wounds. He was discharged on posaconazole.
• At outpatient follow-up, one week post-discharge, increased erythema and induration was present at previously-debrided lesions (Figure 4). He was re-admitted and underwent additional exploration of his wounds. Extensive tissue necrosis was noted surrounding the previously-debrided right lower extremity which necessitated a below-the-knee amputation.
• Tissue samples sent for histopathology showed persistent presence of the organism (Figure 5) from abnormal-appearing areas, but all surgical margins at the site of amputation were clear. CT angiography showed no evidence of vascular involvement.
• An immunotherapeutic vaccine Pythium insidiosum antigen vaccine was administered (3 doses). He was transitioned to itraconazole, terbinafine, minocycline, and caspofungin. Caspofungin was discontinued after six weeks. Plan is for one year of therapy with no evidence of active infection after six months on the above regimen.

Acknowledgements and Disclaimer

The authors acknowledge all those who contributed to the presentation and are grateful for the support of the Department of Microbiology, Immunology and Molecular Genetics at The University of Texas Health Science Center at San Antonio and Dr. Thomas Gradon at Johns Hopkins Medical School provided indispensable assistance in the identification of Pythium insidiosum. Due to the nature of this infection, it is extremely difficult to acquire due to hazards, and as such it cannot be sent. Due to lack of known effective medical therapy, early and radical surgical debridement with confirmed negative tissue margins is recommended and necessary for effective treatment. Luke Meininger, MD; Rupal Mody, MD; Jeff Sherwood, MD and Matthew Perkins, MD

1 William Beaumont Army Medical Center Department of Internal Medicine, El Paso, TX 2 William Beaumont Army Medical Center Department of Infectious Disease, El Paso, TX

Correspondence: Luke_meininger.md@mail.mil