The Diagnostic Yield of 16/18S rRNA PCR of Sterile Site Samples in Pediatric Patients

Leena B. Mithal, MD,1,2, Michael Malczynski, BS3, Chao Qi, PhD4, Patrick C. Seed, MD PhD1,2
1Pediatrics, Northwestern University Feinberg School of Medicine; 2Lurie Children’s Hospital; 3Stanley Manne Children’s Research Institute
3Clinical Microbiology Laboratory, Northwestern Memorial Hospital; 4Pathology, Northwestern University Feinberg School of Medicine. Chicago, IL, United States.

BACKGROUND
- Microbiologic work-up of infection in children is largely based on stains, cultures, and phenotypical identification of clinical specimens.
- Molecular genetic techniques for expedient and sensitive pathogen identification have been studied and implemented.
- 16S and 18S rRNA fungal gene polymerase chain reactions (PCR) and amplicon sequencing from sterile site clinical specimens are used to detect and identify bacterial and fungal pathogens, respectively.
- Existing literature reports rRNA PCR in suspected adult infections including bloodstream infections, endocarditis, osteoarticular infections, and meningitis.
- Clinical and performance data for 16S rRNA and 18S rRNA PCR as a molecular pathogen diagnostic in children are limited.

OBJECTIVE
To assess patterns of utilization and the diagnostic yield of 16S rRNA and 18S rRNA gene PCR with amplicon sequencing of sterile site samples in pediatric patients with suspected infection.

METHODS

16/18S rRNA Gene PCR and Amplicon Sequencing

Polymerease chain reaction
- Fungal full nucleic acid extraction
- DNA extraction
- PCR amplification
 - 16S: V1-V4 region primers; 18S: ITS1-ITS4 region primers; 400bp amplicon
- Amplicon purification
- Positive/negative extraction and PCR controls

Sanger sequencing
- Gel electrophoresis for positive band
- Sanger sequencing of PCR amplicon
- Species identification: - National Center for Biotechnology Information (NCBI) database BLAST
- Assignment was based on match identity percent and length
- Turnaround time: 1-2 days

Cost
16S rRNA PCR or 18S rRNA PCR with Sanger sequencing = $474/sample

RESULTS

16S rRNA gene PCR
- 9/163 (5.5%) positive, all with single organism ID
- 79 (48%) positive PCR assigned as mixed
- 1 discordant result: PCR + Curtainhamella, culture = Aspergillus fumigatus
- Of samples with negative 18S PCR, culture was positive in 3 cases:
 - Blood and skin abscesses
 - Brain abscesses

18S rRNA gene PCR
- 15/138 (11%) 16S PCR positive; 5/138 (4%) 18S PCR positive
- 40/214 (18.7%) positive
- Of samples with negative 18S PCR, culture was positive in 3 cases:
 - Blood and skin abscesses
 - Brain abscesses

Sample source
- Blood
- Skin
- Respiratory/bronchial
- Organ/tissue
- Cerebrospinal fluid
- Pleural fluid

16S PCR sent
- 16S PCR = 234 samples
- 16S PCR = 163 samples
- 16S PCR + 18S PCR = 138 samples

Sample type
- Blood
- Skin
- Respiratory
- Organ/tissue
- Cerebrospinal fluid

16S and 18S PCR sent
- 16S/18S (61%) 16S PCR positive, 5/138 (5%) 18S PCR positive
- 1 sample with both 16 and 18S PCRs positive (debridement abscess p/o intestinal perforation in an immunocompromised patient with 6×10^3 A. baumannii / 9×10^8 S. aureus, positive chest x-ray, parainfluenza, and pneumococcal IgM, with minimal invasive [H] and versus 2.8% [25%] with surgical biopsy

CONCLUSIONS
- 16 and 18S rRNA gene PCR can provide pathogen diagnostics.
- Highest yield sample sites include brain, abscess, pleural effusion, respiratory, osteoarticular, and CSF.
- 16S PCR appears especially useful for suspected anaerobic pathogens where culture conditions are typically not optimal for recovery.
- 18S PCR yield is highest in patients at risk for invasive mold disease and provides more timely results than culture growth to affect antimicrobial therapy.

REFERENCES
2. Kao J, et al. Real-Time PCR of Green Fluorescent Protein with Dr. of the University of California-Kalon Veteran at a Western University. 2007 Mar;57(3):1110-1119.

ACKNOWLEDGMENTS