1166. Development of a Bedside Tool to Predict the Probability of Drug-Resistant Pathogens among an Adult Population with Gram-Negative Infections
Session: Poster Abstract Session: Healthcare Epidemiology: MDR-Gram Negative Infections
Friday, October 5, 2018
Room: S Poster Hall
Posters
  • AVY18084.3018_Clinical Bedside Tool poster.pdf (2.0 MB)
  • Background: Identification of infections caused by antimicrobial-resistant microorganisms is critical to administration of early appropriate antibiotic therapy. We developed a clinical bedside tool to estimate the probability of carbapenem-resistant Enterobacteriaceae (CRE), extended spectrum beta-lactamase-producing Enterobacteriaceae (ESBL), and multidrug-resistant Pseudomonas aeruginosa (MDRP) among hospitalized adult patients with Gram-negative infections.

    Methods: A retrospective observational study of the Premier Hospital Database (PHD) was conducted. The study included  adult hospitalized patients with complicated urinary tract infection (cUTI), complicated intraabdominal infection (cIAI), bloodstream infections (BSI), or hospital-acquired/ventilator-associated pneumonia (HAP/VAP) with a culture-confirmed Gram-negative infection in PHD from 2011 to 2015. Model development steps are shown in Figure 1. The study population was split into training and test cohorts. Prediction models were developed using logistic regression in the training cohort (Figure 1). For each resistant phenotype (CRE, ESBL, MDRP), a separate model was developed for community-acquired (index culture 3 days of admission) and hospital-acquired (index culture >3 days of admission) infections (6 models in total). The predictive performance of the models was assessed in the training and test cohorts. Models were converted to a singular user-friendly interface for use at the bedside.

    Results: The most important predictors of antibiotic resistant Gram-negative bacterial infection were prior number of antibiotics, infection site, prior infection in the last 3 months, hospital prevalence of each resistant pathogen (CRE, ESBL, MDRP), and age (Figure 2). The predictive performance was highly acceptable for all 6 models (Figure 3).

    Conclusion: We developed a clinical prediction tool to estimate the probability of CRE, ESBL, and MDRP among hospitalized adult patients with community- and hospital-acquired Gram-negative infections. Our predictive model has been implemented as a user-friendly bedside tool for use by clinicians to predict the probability of resistant infections in individual patients, to guide early appropriate therapy.

     



     

     

     

    Thomas P. Lodise Jr., PharmD, PhD1, Nicole G. Bonine, PhD, MPH2, J. Michael Ye, MS3, Henry J. Folse, PhD4 and Patrick Gillard, PharmD, MS2, (1)Albany College of Pharmacy and Health Sciences, Albany, NY, (2)Allergan plc, Irvine, CA, (3)Allergan plc, Madison, NJ, (4)Evidera, San Francisco, CA

    Disclosures:

    T. P. Lodise Jr., Motif BioSciences: Board Member , Consulting fee .

    N. G. Bonine, Allergan: Employee , Salary .

    J. M. Ye, Allergan: Employee , Salary .

    H. J. Folse, Evidera: Employee , Salary .

    P. Gillard, Allergan: Employee , Salary .

    Findings in the abstracts are embargoed until 12:01 a.m. PDT, Wednesday Oct. 3rd with the exception of research findings presented at the IDWeek press conferences.