369. Using Hybrid Models and Blockchain technology as a Means to Develop a Novel Propensity Score for Candidemia and Invasive Candidiasis
Session: Poster Abstract Session: Fungal Disease: Management and Outcomes
Thursday, October 4, 2018
Room: S Poster Hall
Background:

Early initiation of empiric antifungal therapy has been shown to decrease morbidity and mortality among patients with candidemia/invasive candidiasis (C/IC). However, the initiation of appropriate antifungal therapy is frequently delayed due to the severe limitations in early diagnosis. The goal of this study is to develop a high-risk scoring system to identify patients who may be eligible for preemptive antifungal therapy. The proposed new methodology combines hybrid modeling and blockchain technology.

Methods: Our approach is novel and using expert physicians’ perception of C/IC risk factors with those described in the hospitals through a set of models (hybrid model building from primary and secondary data). The goal is to improve the early detection of C/IC and initiate antifungal therapy. Once candidate hybrid models are derived, blockchain technology will be utilized. The methodology is based on vectors consisting of the ranking of candidiasis risk factors. These vectors will be constructed based on expert clinicians rank scores of known risk factors. Such methods are different than the usual statistical rank correlation computations, such as Spearman’s rank correlation, etc

Results: Preliminary analysis suggests 3 potential models. Model 1: uses the following order of variables, by their relative importance: 1.) major surgery within 0-3 days, 2.)TPN -7-3 days, 3.) steroids 0-3 days, 4.) ECMO, 5.) hemodialysis 0 - 3 days, 6.) diabetes mellitus. Model 2 includes: 1.)multifocal Candida colonization, 2.) central venous catheter 0 - 3 days, 3.) LVAD, 4.) medical ICU, 5.) APACHE score > 20, 6.) mechanical ventilation. Model 3 includes 1.) pancreatitis -7 - 0 days, 2.) diabetes mellitus, 3.) hemodialysis 0 - 3 days, 4.) central venous catheter 0 - 3 days, 5.) TPN -7 - 3 days, 6.) APACHE score > 20.

Conclusion: Blockchain methods we propose are some of the 1st of their kind used in health research and are very suitable for the early detection of C/IC and other diseases where preemptive therapy is necessary. The following step will be to verify and use these models in the clinical realm and verify their effects on outcomes. 2nd we need to develop and evaluate our proposed methodology in building hybrid models, followed by algorithms for the early detection of diseases. These concepts still need to be fully evaluated on large population studies.

Arni Sr Srinivasa Rao, PhD, Population Health Sciences, Medical College of Georgia/Augusta University, Augusta, GA, Jose Vazquez, MD, FACP, FIDSA, Infectious Diseases, Augusta University Medical Center, Augusta, GA and Luis Ostrosky-Zeichner, MD, FIDSA, FSHEA, Division of Infectious Diseases, Department of Internal Medicine, McGovern Medical School, Houston, TX

Disclosures:

A. S. Srinivasa Rao, None

J. Vazquez, None

L. Ostrosky-Zeichner, None

Findings in the abstracts are embargoed until 12:01 a.m. PDT, Wednesday Oct. 3rd with the exception of research findings presented at the IDWeek press conferences.