1726. A Random Forest Prediction Model Accurately Identifies Periods at Increased Risk for Positive Legionella Cultures in a Hospital Water Distribution System
Session: Oral Abstract Session: The World Around Us: Reducing Exposures to Pathogens in the Healthcare Environment
Saturday, October 6, 2018: 9:00 AM
Room: S 156

Background: Hospitals devote considerable resources to water distribution system (WS) surveillance and remediation for Legionella in an effort to reduce risk of transmitting Legionnaires disease (LD). There are no models that accurately predict periods of greatest risk for Legionella culture positivity (cx +) within a WS. Our goal was to build and validate a model based on weather and water parameters that predicted Legionella cx+ in our hospital WS.

Methods: 1 L water samples from fixtures at 2 campuses were cultured for Legionella on BCYE plates with cysteine as part of infection prevention protocols. Logistic regression (LR) and random forest (RF) models included daily hospital WS measurements and Pittsburgh FAA weather observation station data. Training and validation used 2014-15 and 2016-17 data, respectively. Models predicted a first +cx within 14 d windows.

Results: Cxs were defined as + by loop-day, if any cx from within a unique WS loop was + for Legionella on a given day. 5304 of 7272 water samples were collected from 16 buildings on 2 campuses in which ≥1 cx + was obtained. 1262 WS loop-days were collected over 339 unique days from these buildings. Details on training and validation data sets appear in the Figure. Overall, water was Legionella cx + on 3% of loop-days. Models predicted positivity if risk was >6%. The LR model comprised of independent predictors of cx + had sensitivity/specificity of 44%/80% (AUC: 0.715; misclassification error: 0.21), and PPV/NPV of 9%/97% in the validation data set. The RF model comprised of the same predictors had sensitivity/specificity of 100%/98% (AUC: 1.0; misclassification error: 0.02), and PPV/NPV of 67%/100%. The most important RF variables in the validation data set were WS temperature and minimum pH over the 7 days prior to cx.

Conclusion: An RF model using water and weather data was validated as an accurate predictor of new Legionella cx+ within a hospital WS. Most importantly, NPV for the model was 100%, meaning that no positive Legionella cxs were recovered during periods identified as low-risk. The RF model is a powerful tool for most efficiently directing resources to Legionella surveillance and LD prevention.

Brooke K. Decker, MD, CIC1, Monique B. Kelly, Ph.D.2, Joseph Mikolic, Ph.D.3, Jon D. Walker, Ph.D.2 and Cornelius J. Clancy, M.D.4, (1)Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, (2)VA Pittsburgh Healthcare System, Pittsburgh, PA, (3)Research, VA Pittsburgh Healthcare System, Pittsburgh, PA, (4)Infectious Disease, University of Pittsburgh and VA Pittsburgh, Pittsburgh, PA

Disclosures:

B. K. Decker, None

M. B. Kelly, None

J. Mikolic, None

J. D. Walker, None

C. J. Clancy, None

Findings in the abstracts are embargoed until 12:01 a.m. PDT, Wednesday Oct. 3rd with the exception of research findings presented at the IDWeek press conferences.