1873. Next Steps in Predicting Anti-MRSA Antibiotic Prescribing
Session: Poster Abstract Session: Antimicrobial Stewardship: Potpourri
Saturday, October 6, 2018
Room: S Poster Hall
Posters
  • Holmer_IDWeek2018_final.pdf (127.7 kB)
  • Background: Antibiotic use metrics are utilized by antimicrobial stewardship programs to benchmark performance against peer institutions and inform stewardship efforts. Benchmarking requires risk adjustment for patient- and facility-level factors so that remaining differences are attributable only to prescribing practices. Antibiotics for the treatment of methicillin-resistant Staphylococcus aureus (MRSA) are one of the most frequently used drug classes. Our objective was to identify predictors of anti-MRSA antibiotic use in a nationwide network of hospitals.

    Methods: We used data from inpatient encounters at facilities participating in the Vizient data repository between 1/1/16 – 12/31/16. The outcome, anti-MRSA antibiotic use, was calculated as days of therapy per patient days present for each encounter. We constructed a multivariable negative binomial regression model and assessed the following predictors for inclusion: age, sex, race, ethnicity, diagnosis related groups (DRGs), ICU days, admit month, facility bed size, facility teaching status, and region. A clinical framework was used to categorize DRGs based on risk of anti-MRSA antibiotic use. A backwards stepwise approach was used to identify the final model. We evaluated predictor effect size and significance, and assessed model fit using a deviance-based pseudo R2.

    Results: 145 facilities representing 3,608,711 encounters met inclusion criteria. All predictors considered in our model were significant. Predictors with the greatest magnitude of association included DRG categories and patient age. The DRG categories with the strongest associations were DRGs for infections likely due to Staphylococcus aureus (RR=1.66, p<0.0001) or for diagnoses likely to receive long-term MRSA coverage (RR=1.49, p<0.0001). The age group with the strongest association was age 2-10 years (RR=1.64; p<0.001). The deviance-based pseudo R2 of the final model was 0.19, indicating good model fit.

    Conclusion: DRGs and patient-level characteristics can be utilized to account for variability in anti-MRSA antibiotic use beyond what is explained through facility-level characteristics. Incorporation of the significant predictors identified in this study may aid in more meaningful inter-hospital comparisons of anti-MRSA antibiotic use in both adults and pediatrics.

    Haley K. Holmer, MPH1, Amy Pakyz, PharmD, MS, PhD2, Gregory B. Tallman, PharmD3, Miriam R. Elman, MPH, MS4, Samuel Hohmann, PhD5,6, Rochelle Fu, PhD1, Kristi Kuper, PharmD, BCPS7 and Jessina C. McGregor, PhD1,3, (1)Epidemiology, Oregon Health & Science University / Portland State University, School of Public Health, Portland, OR, (2)Dept. of Pharmacotherapy & Outcomes Science, Virginia Commonwealth University, Richmond, VA, (3)Dept. of Pharmacy Practice, Oregon State University/Oregon Health & Science University College of Pharmacy, Portland, OR, (4)Biostatistics and Design Program, Oregon Health & Science University-Portland State University School of Public Health, Portland, OR, (5)Center for Advanced Analytics, Vizient, Chicago, IL, (6)Department of Health Systems Management, Rush University, Chicago, IL, (7)Vizient, Inc., Houston, TX

    Disclosures:

    H. K. Holmer, None

    A. Pakyz, None

    G. B. Tallman, None

    M. R. Elman, None

    S. Hohmann, None

    R. Fu, None

    K. Kuper, None

    J. C. McGregor, Merck: Grant Investigator , Research grant .

    Findings in the abstracts are embargoed until 12:01 a.m. PDT, Wednesday Oct. 3rd with the exception of research findings presented at the IDWeek press conferences.